Chapter 3
LINEAR PROGRAMMING
Introduction

Linear programming is the most widely applied of all of the optimization methods. The
technique has been used for optimizing many diverse applications, including refineries and
chemical plants, livestock feed blending, routing of aircraft, and scheduling their crews. Many
industrial allocation and transportation problems can be optimized with this method. The
application of linear programming has been successful, particularly in cases of selecting the best
set of values of the variables when a large number of interrelated choices exist. Often such
problems involve a small improvement per unit of material flow time’s large production rates to
have as the net result be a significant increase in the profit of the plant. A typical example is a
large oil refinery where the stream flow rates are very large, and a small improvement per unit of
product is multiplied by a very large number to obtain a significant increase in profit for the
refinery.

The term programming of linear programming does not refer to computer programming
but to scheduling. Linear programming was developed about 1947, before the advent of the
computer, when George B. Dantzig (1) recognized a generalization in the mathematics of
scheduling and planning problems. Developments in linear programming have followed advances
in digital computing, and now problems involving several thousand independent variables and
constraints equations can be solved.

In this chapter a geometric representation and solution of a simple linear programming
problem will be given initially to introduce the subject and illustrate the way to capitalize on the
mathematical structure of the problem. This will be followed by a presentation of the simplex
algorithm for the solution of linear programming problems. Having established the computational
algorithm, we will give the procedure to convert a process flow diagram into a linear programming
problem, using a simple petroleum refinery as an illustration. The method of solution, using large
linear programming computer codes, then will be described, and the solution of the refinery
problem using the IBM Mathematical Programming System Extended (MPSX), will illustrate the
procedure and give typical results obtained from these large codes. Once the optimal solution has
been obtained, sensitivity analysis procedures will be detailed which use the optimal solution to
determine ranges on the important parameters where the optimal solution remains optimal. Thus,
another linear programming solution is not required. This will be illustrated also using results of
the refinery problem obtained from the MPSX solution. Finally, a summary will be given of
extensions to linear programming and other related topics.

Concepts and Geometric Interpretation
As the name indicates, all of the equations that are used in linear programming must be
linear. Although this appears to be a severe restriction, there are many problems that can be cast

in this context. In a linear programming formulation, the equation that determines the profit or
cost of operation is referred to as the objective function. It must have the form of the sum of linear
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terms. The equations that describe the limitations under which the system must operate are called
the constraints. The variables must be nonnegative, 1.e., positive or zero only.

The best way to introduce the subject is with an example. This will give some geometric
intuition about the mathematical structure of the problem and the way this structure can be used to
find an optimal solution.

Example 3.1

A chemical company makes two types of small solid fuel rocket motors for testing; for
motor A the profit is $3.00 per motor and for motor B the profit is $4.00 per motor. A total
processing time of 80 hours per week is available to produce both motors. An average of four
hours per motor is required for A, but only two hours per motor is required for B. However, due
to hazardous nature of the material in B, a preparation time of five hours is required per motor,
and a preparation time of two hours per motor is required for A. The total preparation time of 120
hours per week is available to produce both motors. Determine the number of each motor that
should be produced to maximize the profit.

Solution: The objective function and constraint equations for this case are:
maximize: 3A+4B Profit
subject to: 4A +2B <80 Processing Time

2A +5B <12 Preparation Time

A,B>0

It would be tempting to make all B motors using the preparation time limitation 120/5 = 24 for a
profit of $96. If all A motors were made, there is a processing time limitation 80/4 = 20 for a profit
of $60. However, there is a best solution, and this can be seen from Figure 3-1. The small arrows
show the region enclosed by the constraint equations that is feasible for the variables. For the
processing time and preparation time, any values of the variables lying above the lines violate the
constraint equations. Consequently, feasible values must lie on or inside the lines, and the 4 and
B axes (since A and B must be nonnegative). This is called the feasible region. The objective
function is shown in Figure 3.1 for P = 96, and this is the one of the family of lines:

34+4B=P
or
A=-(4/3) B+ P/3

where P can increase as long as the values of the variables 4 and B stay in the feasible region. By
increasing P, the profit equation shown above moves up with a constant slope of - 4/3, and P
reaches the maximum value in the feasible region at the vertex 4 = 10, B = 20, where P = $110.
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Figure 3-1 Constraints and Objective Function for Maximizing Rocket Motor Profit

Another geometric representation of the profit function and constraints is shown in Figure
3.2. The profit function is a plane and the highest point is the vertex A = 10, B = 20. The
intersection of the profit function and planes of P = constant give a line on the profit function plane
as shown for P = 96. The projection of this line on the response surface (the 4 - B plane) is the
same line shown in Figure 3.1 for P=96. This diagram emphasizes the fact that the profit function
is a plane, and the maximum profit will be at the highest point on the plane and located on the
boundary at the intersection of constraint equations, a vertex.
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Figure 3-2 Geometric Representation of Constraints and
Objective Function for Maximizing Rocket Motor Profit
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This example can be used to illustrate infeasibility also, i.e., no feasible solution to linear
programming problems. For example, if there were constraints on 4 and B such that 4 > 21 and
B> 25, then there would be no solution since the processing and preparation time constraints could
not be satisfied. Although it is obvious here that 4 and B could not have these values, it is not
unusual in large problems to make a mistake and have the linear programming code return the
result INFEASIBLE SOLUTION - the constraints are inconsistent. Almost always a blunder has
been made, and the constraints do not represent the process. However, in large problems the
blunder may not be obvious, and some effort may be required to find the error.

General Statement of the Linear Programming Problem

There are several ways to write the general mathematical statement of the linear
programming problem. First, in the usual algebraic notation:

Objective Function:
optimize: cix1+ coxa+ .t enxn (3-1a)

Constraint Equations:

subject to: ain x1+tanxat..+ai.x,>b
(4-1b)
anxi1tanx2t..ta.x,>b
(3-1b)
amxitamx2t ..t amnXn>bn
x;>0 forj=12,..n (3-1¢)

(4-1c)

We seek the values of the xj's that optimize (maximize or minimize) the objective function,
Equation (3-1a). The coefficients, ¢/'s, of the x/'s are referred to as cost coefficients. These can be
positive and negative depending on the problem. Also, the values of the x/'s must satisfy the
constraint equations, Equation (3-1b), and be nonnegative, Equation (3-1c¢).

There are more unknowns than constraint equations after the inequalities have been
converted to equalities using slack variables. There will be m positive x;'s that optimize the
objective function and the remaining (n - m) x;'s will be zero. In a chemical or refinery process,
the independent variables can be flow rates, for example; and the constraint equations can be
material and energy balances, availability of raw materials, limits on process unit capacities,
demands for products, etc.
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The general formulation can also be written as:

n

optimize: X X
(4-2a)
j=1
n
subject to: X aijxp>b; fori=12,..m
(4-2b)
j=1
xi >0 for j=1,2,..n
(4-2c¢)

Matrix notation is another convenient method of writing the above equations.

optimize: c

subject to: Ax>b

c’'=[ci,c...0n ]

x'=[ x1, x2,..%n |

a4y a, b,

a a b

21 2 2

A=| ! b=| .
ml am2 amn bm

(3-2a)

(3-2b)

(3-2¢)

(3-3a)
(3-3b)

(3-3¢)

The constraint equations given above have been written as inequalities. However, linear

Slack and Surplus Variables

programming requires the constraints be equalities. In the next section, the use of slack and surplus
variables is described to convert the inequalities to equalities.

In Example 3-1 the constraint equations were inequalities and the graphical method of

locating the optimum was not affected by the constraints being inequalities.
computational method to determine the optimum, the Simplex Method, requires equality
constraints. As was done in Chapter 2, the inequalities are converted to equalities by introducing
slack and surplus variables. This is illustrated by converting the inequality, Equation 3-4, to an
equality, Equation 3-5.
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xX1+x2<b (3-4)

Here a positive x3 is being added to the left-hand side of Equation 3-4, and x3 is the slack variable:
x1tx2+x3=b (3-5)

If the inequality had been of greater than or equal to type, then a surplus variable would have been
subtracted from the left-hand side of the equation to convert it to an equality.

In linear programming it is not necessary to use x32, as in Chapter 2, since the computational
method to find the optimum, the Simplex Method, does not allow variables to take on negative
values. If the slack variable is zero, as it is in some cases, the largest value of the sum of the other
variables (x| +x2) is optimum, and the constraint is tight or active. If the slack variable is positive,
then this would represent a difference or slack between the optimum values of (x1 + x2) and the
total value that (x1 + x2) could have. In this case the constraint is loose or passive.

Basic and Basic Feasible Solutions of the Constraint Equations

Now let us focus on the constraint equation set alone, written as equalities (i.e., slack and
surplus variables have been added), and discuss the possible solutions that can be obtained. This
set can be written as:

Ax=b (3-6)

There are m equations and »n unknowns where n > m (for convenience using » again which now
would include the slack and surplus variables, also).

A number of solutions can be generated for this set of linear algebraic equations by
selecting (n - m) of the x;'s to be equal to zero. In fact, this number can be computed using the
following formula (9).

!
Maximum number of basic solutions = — "= (3-7)
m!(n—m)!

Thus, a basic solution of the constraint equations is a solution obtained by setting (n - m) variables
equal to zero and solving the constraint set for the remaining m variables. From this set of basic
solutions, a group of solutions are selected where the values of the variables are all nonnegative,
basic feasible solutions. The number of solutions can be estimated by the following formula (18).

Approximate number of basic feasible solutions = 2m (3-8)
Thus, a nondegenerate basic feasible solution is a basic solution where all of the m variables are

positive. A solution of m variables that are all positive is called a basis in the linear programming
jargon.
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Let us focus on the objective function, Equation 3-1a, now that we have a set of basic
feasible solutions from the constraint equations. It turns out that one of the basic feasible solutions
is the minimum of the objective function, and another one of these basic feasible solutions is the
maximum of the objective function. The Simplex Algorithm begins at a basic feasible solution
and moves to the maximum (or minimum) of the objective function stepping from one basic
feasible solution to another with ever increasing (or decreasing) values of the objective function
until the maximum (or minimum) is reached. The optimum is found in a finite number of steps,
usually between m and 2m (7).

We will need to know how to obtain the first basic feasible solution and how to apply the
Simplex Algorithm. Also, it will be seen that when the maximum (or minimum) is reached the
algorithm has an automatic stopping procedure. Having briefly described the Simplex Method, let
us give the procedure, illustrate its use with an example, and present some of the mathematical
basis for the methodology in the next section.

Optimization with the Simplex Method

The Simplex Method is an algorithm that steps from one basic feasible solution
(intersection of the constraint equations or vertex) to another basic feasible solution in a manner
to have the objective function always increase or decrease. Without attempting to show a model
associated with the following linear programming problem (2), let us see how the algorithm
operates.

Example 3-2

For the following linear programming problem, convert then constraint equations to equality
constraints using slack variables:

maximize: X1+ 2x2

subject to: 2x1+ x2 <10
x1+ x2 <6
X1+ x2 <2

2x1+ x <1
X1, x2 >0

When the slack variables are inserted, the constraint equations are converted to equalities, as shown
below.
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Maximize: X1+ 2x2 =p

Subject to: 2x1+ x2+x3 =10
X1t x + x4 =6
X1+ X2 + X5 =2
2x1+ x2 +x6=1
x; >0, j=1,2,..,6.

where p represents the value of the objective function.

There are six variables in the set of four constraint equations in Example 3-2. To generate
basic solutions, two of the variables are set equal to zero, and the equations are solved for the
remaining four variables for the solution. This has been done (2), and all of the basic feasible
solutions were selected from the basic solutions and listed in Table 3-1. These correspond to the
vertices of the convex polygon A-B-C-D-E-F as shown in Figure 3-3. Also shown in Table 3-1
are the values of the objective function evaluated for each basic feasible solution. As can be seen,
the maximum of the objective function is at the basic feasible solution, x1 = 2, x» = 4 (Vertex D);
and the minimum is at the basic feasible solution, x; =0, x = 0 (Vertex A).

Table 3-1. Basic Feasible Solutions of the Constraint Equations in Example 3-2

Vertex  x1 X2 X3 X4 X5 X6 )4
A 0 0 10 6 2 1 0
B 0 1 9 5 1 0 2
C 1 3 5 2 0 0 7
D 2 4 2 0 0 1 10
E 4 2 0 0 4 7 8
F 5 0 0 1 7 11 5

The number of basic solutions is given by Equation 3-7 (5). For n =6 and m =4 the number
of basic solutions is 15. One of the basic solutions of the constraint equations is obtained by setting
x1 =x4 =0, and the result is:

x1=0, xX2=0, x3=4, x4=0, xs=-4 and x¢=-5

Here two of the four values of the variables are negative. The approximate number of basic feasible
solutions given by Equation (3-6) is eight, which is close to the actual number of six.

Referring to Table 3-1 and Figure 3-3 and comparing the variables in a basis with those in
an adjacent basis, it is seen that each have all but one nonzero variable in common. For example,
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to obtain basis B from basis 4 it is necessary to remove x¢ from the basis (i.e., set x¢ = zero) and
bring x> into the basis (i.e., solve for x2 # 0). The Simplex Method does this and moves

o 2%+ x=10

X

Figure 3-3 Geometric Representation of the Constraints in Example 4-2

from one basic feasible solution to another. Each time it moves in a direction of an improved value
of the objective function. This is the key to the Simplex Algorithm. To move in this fashion only
requires the use of Gaussian elimination applied to the constraints and then to the objective
function to determine its new improved value.

The procedure to solve a linear programming problem using the Simplex Algorithm to
maximize the objective function is:

1. Place the problem in a linear programming format with linear constraint equations and linear
objective function.
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2. Introduce slack and surplus variables to convert inequalities to equalities and adjust the
constraint equations to have positive right-hand sides.

3. Select an initial basic feasible solution. If all of the constraint equations were inequalities of
the less than or equal to form, the slack variables can be used as the initially feasible basis.

4. Perform algebraic manipulations to express the objective function in terms of variables that are
not in the basis, i.e., are equal to zero. This determines the value of the objective function for the
variables in the basis.

5. Inspect the objective function and select the variable with the largest positive coefficient to
bring into the basis, i.e., make nonzero. If there are no positive coefficients, the maximum has
been reached (automatic stopping feature of the algorithm).

6. Inspect the constraint equations to select the one to be used for algebraic manipulations to
change the variable in the basis. The selection is made to have positive right-hand sides from the
Gaussian elimination. This is necessary to guarantee that all of the variables in the new basis will
be positive. Use this equation to eliminate the variable selected in step 5 from all of the other
constraint equations.

7. Use the constraint equation selected in step 6 to eliminate the variable selected in step 5 from
the objective function. This moves one of the variables previously in the basis to the objective
function, and it is dropped from the basis, i.e. set equal to zero. Also, this determines the new value
of the objective function.

8. Repeat the procedure of steps 5 through 7 until all coefficients in the objective function are
negative and stop. If the procedure is continued past this point, then the value of the objective
function would decrease. This is the automatic stopping feature of the algorithm.

The Simplex Algorithm will be applied to Example 3-2 to illustrate the computational
procedure. The first two steps have been completed, and the slack variables will be used as the
initial feasible basis (Step 3).

Example 3-3

Apply the Simplex Method to the linear programming problem of Example 3-2 using the slack
variables as the first basic feasible solution.

maximize: X1+ 2x2 =p p=0
subject to: 2x1+ x2+x3 =10 x3=10

X1+ x2 + x4 =6 xX4=06

-x1+ x + x5 =2 x5=2
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-2x1+x2 + X6 =1 xe=1

x1=0

x2=0
Continuing with the procedure, x» is the variable in the objective function with the largest positive
coefficient. Thus, increasing x> will increase the objective function (step 5).

The fourth constraint equation will be used to eliminate x> from the objective function (step 6).
The variable x» is said to enter the basis, and x¢ is to leave.

Proceeding with the Gaussian elimination gives:

maximize: Sx1 2x6=p -2 p=2
subject to: 4x1 +x3 -x6=9 x3=9
3x1 + x4 -X6=135 x4=35

X1 +x5—x6=1 xs=1

-2x1 +x2 +x6=1 x2=1

x1=0

x6=0

The nonzero variables in the basis are x2, x3, x4, and xs; and the objective function has increased
fromp=0top=2.

The procedure is repeated (Step 8) selecting x1 to enter the basis. The third constraint equation is
used, and xs leaves the basis. Performing the manipulations gives:

maximize: - 5xs +3x¢ =p-7 p=17
subject to: x3 -4xs +3x¢ = 5 x3=35
X4 -3x5 +2x¢ = 2 X4=2

X1 + x5 - x6 = 1 x1=1

X2 + 2x5- x¢ = 3 x2=3

x5=0

x6=0
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The procedure is repeated, and x¢ 1s selected to enter the basis. The second constraint equation is
used, and x4 leaves the basis. The results of the manipulations are:

maximize: -3/2x4 - 1/2 x5 =p-10 p=10
subject to: x3-3/2 x4 +1/2 x5 =2 x3=2
1/2x4 -3/2x5 +x6 =1 x6=1
x1 +1/2xs +1/2 x5 =2 x1=2
x2 + 1/2 x4+ 1/2 x5 =4 x2=4
x4=0
x5=0

All of the coefficients in the objective function are negative for the variables that are not in the
basis. If x4 or xs were increased from zero to a positive value, the objective function would
decrease. Thus, the maximum is reached, and the optimal basic feasible solution has been
obtained.

Referring to Table 3-1 and Figure 3-3 for the set of basic feasible solutions, it is seen that
the Simplex Method started at vertex 4. The first application of the procedure stepped to the
adjacent vertex B, with an increase in the objective function to 2. Proceeding, the Simplex Method
then moved to vertex C, where the objective function increased to 7. At the next application of
the algorithm, the optimum was reached at vertex D with p = 10. At this point the application of
the Simplex Method stopped since the maximum had been reached.

Let us use this example to demonstrate that the Simplex Method can be used to find the
minimum of an objective function by only slightly modifying the logic of the algorithm for
maximizing the objective function. If we begin by minimizing the objective function given in the
last step of Example 3-3, the largest decrease in the objective function is made by selecting x4 to
enter the basis (Step 5), i.e., selecting the variable which is not in the basis and whose coefficient
is the largest in absolute value and negative. Then select the second constraint equation for the
manipulations to have positive right-hand sides of the constraints. This has x4 entering the basis,
and x¢ leaving the basis. The results are the same as in the next to last step of the example.
Proceeding, xs is selected to enter the basis, the third constraint equation is used for the
manipulations, and x; leaves the basis. The results are the same as the second step of the example.
Continuing, xs is selected to enter the basis, the fourth constraint equation is used for the
manipulations, and x; leaves the basis. The results are the same as the first step in the example,
and all of the coefficients of the variables in the objective function are positive for the variables
not in the basis. The minimum has been reached, because if either x1 or x> were brought into the
basis, i.e., made positive, the objective function would increase.
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Thus, the Simplex Algorithm applies for either maximizing or minimizing the objective
function. The logic of the algorithm is essentially the same in both cases, and it only differs in the
selection of the variable to enter the basis, i.e., largest positive coefficient for maximizing or the
largest in absolute value and negative for minimizing.

With this example we have illustrated the computational procedure of the Simplex
Algorithm. Also, we have seen that a solution of the constraints gives the maximum of the
objective function, and another solution gives the minimum of the objective function. These
results can be proven mathematically to be true for the linear programming problem stated as
Equation 3-1, and the details are given in texts devoted to linear programming. In the following
section we will give a standard tabular method for the Simplex Method, and then the key theorems
of linear programming will be presented along with a list of references where more details can be
found on mathematical aspects of linear programming.

Simplex Tableau

In using the Simplex Method, it is not necessary to write the x; symbols when doing the
Gaussian elimination procedure, and a standard method for hand computations has been developed
which uses only the coefficients of the objective function and constraints in a series of tables. This
is called the Simplex Tableau, and this procedure will be illustrated using the problem given in
Example 3-3.

The Simplex Tableau for the three applications of the Simplex Algorithm of Example 3-3
is shown in Figure 3-4. In this table, dots have been used in places that have to be zero, as opposed
to just turning out to be zero. Also, the objective function has been set equal to -y, because the
tableau procedure minimizes the objective function and is called z, i.e., z= -y = -x1 - 2x2. Then the
objective function is included in the last row of the tableau as -z - x1 - 2x2 = 0 to have the same
form as the constraint equations. Iteration 0 in Table 3-4 is the initial tableau.

The slack variables are the initially feasible basis in this example, and the Simplex
Algorithm first locates the smallest coefficient in the objective function of the variables not in the
basis. In this case it is x> as shown in Figure 3-4 with a coefficient of -2; x> will enter the basis,
1.e., becomes positive. A pivotal element is located to insure the next basis is feasible using a
minimum ratio test, i.e., selecting the smallest value of (10/1, 6/1, 2/1, 1/1), and the pivotal element
is indicated as an asterisk identifying the pivotal row used for the Gaussian elimination to move to
iteration 1, with x¢ leaving the basis.

The above procedure is repeated for two more iterations, as shown in Figure 3-4. The
pivotal elements are indicated by an asterisk, having been located by the minimum ratio test. The
procedure ends when the values in the objective function row are all positive, for this is a
minimizing problem. Also, a comparison of the results in Figure 3-4 with those in Example 3-3
shows the concise nature of the Simplex Tableau. In addition, if a pivotal element cannot be
located using the minimum ratio test, this means that the problem has an unbounded solution, or a
blunder has been made.
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Iteration Basis Value X| X Xz Xgq X5 Xg

X3 10 21|
X4 6 I I I
0 X5 2 -] I
Xg [ 20 I ol A R R
-z 0 -1 |-2

Initial tableau, x, enters basis, xg leaves the basis.

X3 9 4 | -1
Xgq 5 3 I -1
I x5 I " 1| -
X2 ! -2 I |
-2 2 -5 | - . . . 2

First iteration, x; enters the basis, x5 leaves the basis.

X3 5 ! -4 3
X4 2 eyl -3 o2t

2 X | [ O I N N
X 3 bl - -t 2=
-z 7 -l -] -151-3

Second iteration, xg enters the basis, x4 leaves the basis.

x3 2 1|32 172] -
X6 ! t/2-372| |

3 % 2 I S R NV V7
X2 4 1] izl vz
-z 10 N EANZ

Final iteration, coefficients are positive, minimum has been
reached

*Ppivotal element from the minimum ratio test

Figure 3-4 Illustration of the Simplex Tableau

The Simplex Tableau procedure can be used effectively for hand calculations when
artificial variables are employed to start the solution with an initially feasible basis and to identify
problems such as degeneracy. The topics of degeneracy and artificial variables will follow the
discussion of the mathematics of linear programming.
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Mathematics of Linear Programming

The mathematics of convex sets and linear inequalities has to be developed to prove the
theorems that establish the previous procedure for locating the optimal solution of the linear
programming problem. This theory is done in many of the standard texts devoted to the subject
and 1s beyond the scope of this brief discussion. However, the appropriate theorems will be given
with an explanation, to convey these concepts. Those who are interested in further details are
referred to standard works such as Garvin (3) or Gass (7).

A feasible solution, 1s any solution to the constraint equations, Equation 3-1 and also, is a
convex set. A convex set is illustrated in Figure 3-5a, for two dimensions and is a collection of
points such that if it contains any two points 4 and B, is also contains the straight-line 4B between
the points. An example of a nonconvex set is shown in Figure 3-5b. Also, an extreme point or
vertex of a convex set is a point that does not lie on any segment joining two other points in the
set.

X

a) CONVEX SET

X2

b) NON-CONVEX SET

Figure 3-5 Convex and Nonconvex Sets
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The important theorem relating convex sets with feasible and basic feasible solutions is:

The collection of feasible solutions constitutes a convex set whose extreme points
correspond to basic feasible solutions. (4)

In the proof of the above theorem it is shown that a linear combination of any two feasible
solutions is a feasible solution and hence lies on a straight line between the two. Thus, this
constitutes a convex set. To prove that a basic feasible solution is an extreme point, it is assumed
that a basic feasible solution can be expressed as a linear combination of feasible solutions. Then
it is shown by contradiction that this is impossible. Thus, it must be an extreme point.

The next important theorem is an existence theorem:
If a feasible solution exists, then a basic feasible solution exists. (5)

This theorem is proved by showing that a basic feasible solution can be constructed from
a feasible solution.

The next theorem relates the maximum or minimum of the objective function to the basic
feasible solutions of the constraint equations.

If the objective function possesses a finite minimum, then at least one optimal solution is
a basic feasible solution. (6)

This theorem can be proved by writing a solution to the constraint equations as the
weighted sum of a feasible solution and a basic solution where a range on the weights determines
that this solution of the constraint equations is a feasible solution. The objective function can then
be put in the form of the weights, and limits on the weights are determined that has the feasible
solution be a basic feasible solution. Next, it can be shown that it is always possible to generate a
new feasible solution which contains at least one more variable at zero than the current one, and
the new value of the objective function will be less than or equal to the current value. Continuing
to generate new feasible solutions by the procedure has the feasible solutions become a basic
feasible solution, if the objective function is not equal to minus infinity. The procedure holds for
any feasible solution, and then it holds for an optimal solution. Thus, the optimal solution is a
basic feasible solution. Details of this proof are given in Garvin (6).

This theorem provides the basis for locating optimal solutions of the linear programming
problem. Only basic feasible solutions need to be examined to determine the maximum and
minimum for the problem, and there are a finite number of basic feasible solutions. In contrast
there are an infinite number of feasible solutions.

To formalize the simplex computational procedure, consider the set of equations with a
basic feasible solution x = (x4, x5, X¢).

70



maximize: ci1x1 + caxa + c3x3 = po (3-9a)

subject to: anxi +anx2 + aixs + x4 = b
ax1x1 + axnxz + a;x; + x5 =b (3-9b)
az1x1 + azxz + assx; +x6 =Dbs

>0  i=12,..6

If c1 is the largest positive coefficient and bi/ai1 is the smallest positive ratio, then x; enters the
basis and x4 leaves the basis. Performing the elimination, the result is:

maximize: (c2 - cia/an)xa + (c3 - ciais/an)xs - (ciais/an)xa = po - cibi/air = pi (3-10a)
subject to: xi + (ar/aiy + (ars/anyxs + (ara/arnxs =bian (3-10b)
(axn-azia/an)x: + (axn-aziaiz/an)xs - (azaw/anys +xs = br-azibi/an

(az2-aziaz/an)x2 + (as-azaz/an)xs- (asaw/anys  +xe = bsz-azibi/an

If p1 > po, then there is an improvement in the objective function, and the solution is continued. If
p1 < po, then no improvement in the objective function is obtained, and x is the basic feasible
solution that maximizes the objective function. The following theorem given by Gass (7) is:

If for any basic feasible solution x; = (x1, X2, ... Xu) the condition p(Xy) > p(X;) for all j =
L1,2,..n (j # k) hold, then xi is a basic feasible solution that maximized the objective
function.

The proof of this theorem is similar to that of the previous theorem. Also, a corresponding result
can be obtained for the basic feasible solution that minimizes the objective function.

Further information is given in the textbooks by Garvin (6), Gass (7), and others listed in
the table on selected texts given at the end of the chapter. These books give detailed proofs to the
key theorems and other related ones.

Degeneracy

In the Simplex Method there is an improvement in the objective function in each step as
the algorithm converges to the optimum. However, a situation can arise where there is no
improvement in the objective function from an application of the algorithm, and this is referred to
as degeneracy. Also, there is a possibility that cycling could occur, and the optimum would not
be reached. Degeneracy occurs when the right-hand side of one of the constraint equations is equal
to zero, and this equation is selected for the algebraic manipulation to change variables in the basis
and evaluate the objective function. Graphically this occurs when two vertices coalesce into one
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vertex. It is reported (6) that it is not unusual for degeneracy to occur in the various applications
of linear programming. However, there has not been a case of cycling reported. An example of
cycling has been constructed, and a procedure to prevent cycling has been developed. However,
these are not usually employed. The following example from Garvin (6) illustrates degeneracy,
and an optimal solution is found even if it does occur.
Example 3-4
Solve the following problem by the Simplex Method.
maximize: 2x1+ x2
subject to: x1+2x <10
x1+x2 < 6
x1- x2 < 2
x1-2x < 1
2x1-3x2 <3
A graphical representation of the constraint equations is shown in Figure 3-6. It shows that
the last three constraint equations all intersect at vertex C. Vertex C is said to be overdetermined.
If the constraint equation x1 - 2x2 < 1 had been 0.9x; - 2x> < 1, there would have been two separate
vertices, as shown in Figure 3-6. Degeneracy occurs when two or more vertices coalesce into a
single vertex.
To illustrate what happens, the Simplex Algorithm will be started at vertex 4 and move

through B and C to D, where the optimal solution is p = 10 for x; =4 and x> = 2. Using the slack
variables as the initially feasible basis gives:

Vertex A

2x1+ x2 =p p=0
X1 +2x2 +x3 =10 x3=10
x1+ x2 + x4 =6 X4=06

X1 - X2 + X5 =2 X5 =2

—=> X1 - 2x2 + X6 =1 x6=1
2x1 - 3x2 +x7 =3 x7=3
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Then x; is selected to enter the basis and xs leaves the basis. Performing the algebraic
manipulations, the following results are obtained for vertex B.

X2

Xy
-1 P
-2 k-
y
Figure 3-6 Graphical Representation of the Constraint Equations for Example 4-4
Vertex B

S5x2 - 2x6 =p-2 p =2

4x7+ x3 - X6 =9 x3=9

3x2 + x4 - X6 =5 x4=5

= X2 +xs5 - X6 =1 xs=1

X1 - 2x2 + X6 =1 x1=1

= X2 - 2x6 + X7 =1 x7=1

73



Then x; is selected to enter the basis and either the equation with x5 or the equation with x7 can be
used for the algebraic manipulations. The following calculations use the equation with x7 and then
use the one with xs to illustrate the effect of these decisions. (In a computer program the decision
would be made rather arbitrarily, e.g., by selecting the one with the lowest subscript.)

Performing the algebraic manipulations to have x7 leave the basis gives:

Vertex C

+ 8x6- Sx7 =p-7 p =7

X3 + Txe6 - 4x7 =35 x3=5
X4+ Sx6-3x7 =2 X4=2

— X5+ X6 -X7 =0 x5=0

X1 - 3xet 2x7 =3 x1=3
X2 - 2x6 +x7 =1 x2=1

The right-hand side of the third constraint equation is zero, and this causes x5 = 0 which contradicts
the fact that variables in the basis are to be greater than zero.

However, the procedure is to continue with the Simplex Method selecting xs to enter the
basis, and the third constraint equation is used for the algebraic manipulations to have positive (or
zero) right-hand sides. Then x5 leaves the basis, and the result is:

Vertex C
- 8xs + 3x7 =p-7 p =7
X3- 7xs + 3x7 =35 x3=35
—=>  X4-5x5 + 2x7 =2 X4=2
X5 +X6- X7 =0 x6=0
X1 + 3xs - X7 =3 x1=3
X2 + 2xs - X7 =1 x2=1

There was no improvement in the objective function and the Simplex Method did not move from
vertex C.
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The procedure is continued having x7 enter the basis and x4 leave the basis. The results of the
algebraic manipulations are:

Vertex D
-3/2x4 -2 x5 =p-10 p =10
X3 -3/2 x4+ Vs x5 =2 x3=2
Y2 x4 - 5/2 x5 +x;7 =1 x7=1
Y2ax4 -3/12x5+ X6 =1 x6=1
X1 + Voxa + Vaxs =4 x1=4
X2 + Yaxa- Vaxs =2 xX2=2

The maximum has been reached since the coefficients of the variables in the objective function are
all negative. The simplex algorithm was unaffected by the right-hand side of one of the equations
becoming zero during the application of the algorithm.

Now returning to vertex B and selecting xs to enter the basis, the result of the manipulations
1s:

Vertex C
- 5xs5 + 3x6 =p-7 p =7
X3 - 4xs5+ 3x6 =5 x3=35
=  X4-3x5+ 2x6 = 2 X4=2
X2 +xs5 - X =1 x2=1
X1 +2xs - Xe =3 x1=3
- Xs - Xe¢ tXx7 =0 x7=0

Then selecting x¢ to enter the basis and x4 to leave the basis, the result of the manipulation
is the optimum given at vertex D previously. Consequently, when using xs there is an improvement
in the objective function and one fewer applications of the Simplex Algorithm were required.

Unfortunately, the effect of a constraint equation selection with degeneracy cannot be
predicted in advance for large problems, and an arbitrary selection is made, as previously
mentioned. In conclusion, degeneracy is not unusual, but it has yet to affect the solution of linear
programming problems in industrial applications.
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Artificial Variables

To start a linear programming problem, it is necessary to have an initially feasible basis as
required in Step 3 of the Simplex Method and as shown in Equation (3-9b). In the illustrations up
to now we have been able to use the slack variables as the initially feasible basis. However, the
constraints generally are not in such a convenient form, so another procedure is used to have an
initially feasible basis, artificial variables. In this technique a new variable, an artificial variable,
is added to each constraint equation to give an initial feasible basis to start the solution. This is
permissible, and it can be shown that the optimal solution to the original problem is the optimal
solution to the problem with artificial variables. However, it is necessary to modify the objective
function to ensure that all of the artificial variables leave the basis. This is accomplished by adding
terms to the objective functions that consist of the product of each artificial variable and a negative
coefficient that can be made arbitrarily large in magnitude for the case of maximizing the objective
function. Thus, this will insure that the artificial variables are the first ones to leave the basis
during the application of the Simplex Method.

At this point it is reasonable to question if this would not be a significant amount of
computations for convenience only. The answer would be yes if only one small linear
programming problem was to be solved. However, this is not usually the case, and the margin for
error is reduced significantly by avoiding manipulation of the constraint equations in a large
problem. In fact, large linear programming codes only require the specification of the values of
the coefficients in the objective function and the coefficients, right-hand sides and the types of
inequalities of the constraint equations to obtain an optimal solution. These programs can solve
linear programming problems having thousands of constraints and thousands of variables (12).
Consequently, developing a linear model of a plant or a process is the main effort required, and
then one of the available general linear programming codes can be used to obtain the optimal
solution. Also, most major companies have a group that includes experts in using linear
programming; and also, there are firms that specialize in industrial applications of linear
programming.

The following example illustrates the use of artificial variables as they might be employed
in a computer program. The technique is sometimes called the “big M method.” Another method,
the “Two-Phase” method is comparable. See Problem 3-25.

Example 3-5 (8)
Solve the following linear programming problem using artificial variables.
minimize: X1+ 3x2

subject to: x1+4x2>24

Sx1+ x2>25
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Slack variables x3 and x4 and artificial variables a1 and a> are introduced as shown below. The
artificial variables will be the initially feasible basis since the slack variable would give negative
values, and algebraic manipulations would be required to have x; and x, be the initially feasible
basis. In the objective function M is the coefficient of the artificial variables a1 and a», and M can
be made arbitrarily large to drive ai and a> from the basis.

minimize: x1+3x2 + Ma +Ma, =c
subject to: x1+4x -x3  + a =24
Sx1+ x2 - X4 + ay =25

The two constraints equations are used to eliminate a; and a; from the objective function. This is
Step 4 in the Simplex Method, and the objective function is a large number, 49M, as shown below.

(1-6M)yx1+(3-5M)x2+Mx3+ Mxs =c—49M c=49M
X1+ 4x- Xx3 + a =24 a1 =24
Sx1 + X2 - X4 +a =25 a =125

Applying the Simplex Algorithm, x| enters the basis since it has the negative coefficient that is
largest in magnitude. The second constraint equation is used to perform the algebraic
manipulations, and a> leaves the basis. Performing the manipulations gives:

(14/5 - 19/5M) xa + M+ (1/5 - 1/5M) xa - (1/5-6/5M)yaz=c - 19M - 5

19/5x; - x3 + 1/5x4 + ai -1/5a, =19
X1 + 1/5x; - 1/5x4 + 1/5a,=5
c=19M+5 ar=19 x1=35

Continuing with the Simplex Algorithm x> enters the basis. The first constraint equation is used
for the algebraic manipulations, and a; leaves the basis. Performing the manipulations gives:

14/19  x3+ 5/95 x4+ (-14/19 + M) a1 + (-5/95 + M)az = ¢ - 19
x2-5/19+ 1/19x4+ 5/19 a) ) 1/19a; = 5
xi + 119 -20/95xs- 1/19a + 20/95a, = 4

c=19 x1=4 x»x=5
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Now the terms containing the artificial variables a1 and a> can be dropped from the
objective function and the constraint equations. The reason is that they both have large positive
coefficients in the objective function and will not reenter the basis. The problem is continued
without them to reduce computational effort. However, for this problem the optimum has been
reached since all of the coefficients in the objective function are positive, and no further reduction
can be obtained.

In addition to the infeasible difficulty, there is another problem that can be encountered in
linear programming, an unbounded problem, which is usually caused by a blunder. In this
situation, the constraint equations do not confine the variables to finite values. This is illustrated
by changing the linear programming problem in Example 3-5 from one of minimizing x; + 3x2 to
maximizing x1 + 3x2 subject to the constraints given in the problem. The constraints are of the
greater than or equal to type, and they are satisfied with values of x1 > 4 and x> > 5. Then for
maximizing the objective function the values of x1 and x> could be increased without bounds to
have the objective function also increase without bounds. Thus, the problem is said to be
unbounded.

Formulating the Linear Programming Problem — A Simple Refinery

To this point in the discussion of linear programming the emphasis has been on the solution
of problems by the Simplex Method. In this section procedures will be presented for the
formulation of the linear programming problem for a plant or process. This will include
developing the objective function from the cost or profit of the process or plant and the constraint
equations from the availability of raw materials, the demand for products and equipment capacity
limitations and conversion capabilities. A simple petroleum refinery will be used as an example
to illustrate these procedures. Also, an optimal solution will be obtained using a large linear
programming code to illustrate the use of one of these types of programs available on a large
computer. In the following section the optimal solution of the general linear programming problem
will be extended to a sensitivity analysis, and these results will be illustrated using the information
computed from the large linear programming code for the simple refinery example.

In Figure 3-7 the flow diagram for the simple petroleum refinery is shown, and in Table 3-
2 the definition is given for the name of each of the process streams. There are only three process
units in this refinery, and these are a crude oil atmospheric distillation column, a catalytic cracking
unit and a catalytic reformer. The crude oil distillation column separates crude oil into five streams
which are fuel gas, straight run gasoline, straight run naphtha, straight run distillate and straight
run fuel oil. Part of the straight run naphtha is processed through the catalytic reformer to improve
its quality, i.e., increase the octane number. Also, parts of the straight run distillate and straight
run fuel oil are processed through the catalytic cracking unit to improve their quality so they can
be blended into gasoline. The refinery produces four products, and these are premium gasoline,
regular gasoline, diesel fuel and fuel oil. Even for this simple refinery there are 33 flow rates for
which the optimal values have to be determined. This small problem points out one of the
difficulties of large linear programming problems. The formulation of the problem is quite
straightforward. However, there is a major accounting problem in keeping track of a large number
of variables, and the collection of reliable data to go with these variables is usually very time
consuming (9).
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Figure 3-7 Process Flow Diagram for a Simple Refinery
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Table 3-2 Definitions of the Names of the Process Streams for the Simple Petroleum Refinery

No.

p—

O 03N L B W

Name

CRUDE
FGAD
SRG
SRN
SRDS
SRFO
SRNRF
FGRF
RFG
SRDSCC
SRFOCC
FGCC
CCG
CCFO
SRGPG
RFGPG
SRNPG
CCGPG
PG
SRGRG
RFGRG
SRNRG
CCGRG
RG
SRNDF
CCFODF
SRDSDF
SRFODF
DF
CCFOFO
SRDSFO
SRFOFO
FO

Definition (Flow rates are in barrels per day)

Crude oil flow rate to the atmospheric crude distillation column (AD)
Fuel gas flow rate from AD

Straight run gasoline flow rate from AD

Straight run naphtha flow rate from AD

Straight run distillate flow rate from AD

Straight run fuel oil flow rate from AD

Straight run naphtha feed rate to the reformer (RF)

Fuel gas flow rate from the reformer

Reformer gasoline flow rate

Straight run distillate flow rate to the catalytic cracking unit (CCU)
Straight run fuel oil flow rate to the CCU

Fuel gas flow rate from the CCU

Gasoline flow rate from CCU

Fuel oil flow rate from CCU

Straight run gasoline flow rate for premium gasoline (PG) blending
Reformer gasoline flow rate for PG blending

Straight run naphtha flow rate for PG blending

CCU gasoline flow rate for PG blending

Premium gasoline flow rate

Straight run gasoline flow rate for regular gasoling (RG) blending
Reformer gasoline flow rate for RG blending

Straight run naphtha flow rate for RG blending

CCU gasoline flow rate for RG blending

Regular gasoline flow rate

Straight run naphtha flow rate for diesel fuel (DF) blending

CCU fuel oil flow rate for DF blending

Straight run distillate flow rate for Df blending

Straight run fuel oil flow rate for DF blending

No. 2 diesel fuel flow rate

CCU fuel oil flow rate for fuel oil (FO) blending

Straight run distillate flow rate for FO blending

Straight run fuel oil flow rate for FO blending

No. 6 fuel oil flow rate
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In Table 3-3 the capacities, operating costs, process stream, mass yields, and volumetric
yields are listed for the three process units in the refinery. These are typical of a medium size
refinery in the Gulf coast area. The mass yields were taken from those reported by Aronfsky,
Dutton and Tayyaabkhan (10) and were converted to volumetric yields by using API gravity data.
The operating costs were furnished by the technical division of a major oil company that has
refineries on the Gulf Coast.

Table 3-3 Capacities, Operating Costs and Volumetric Yields for the Refinery Process Units

Mass Yield Volumetric

Operating of Output Yields of
Capacity Cost Streams Output Stream

Unit (bbl/day) ($/bbl) Input Output (1b/1b) (bbl/bbl)
Crude Oil 100,000 1.00 CRUDE FGAD 0.029 35.42
Atmospheric SRG 0.236 0.270
Distillation SRN 0.223 0.237
Column SRDS 0.087 0.086
SRFO 0.426 0.372
Catalytic 25,000 2.50 SRNRF FGRF 0.138 158.7
Reformer RFG 0.862 0.928
Catalytic 30,000 220 SRDSCC FGCC 0.273 336.9
Cracking CCG 0.536 0.619
Unit CCFO 0.191 0.189
SRFOCC FGCC 0.277 386.4
CCG 0.527 0.688
CCFO 0.196 0.220

The quality specification and physical properties are given in Table 3-4 for the process
streams, and the crude oil cost and the product sales prices are given in Table 3-5. The data in
Table 3-4 was reported by Aronfsky et.al. (29), and the cost and prices in Table 3-5 were obtained
from the Oil and Gas Journal (11). The information given in Table 3-3, 3-4, and 3-5 is required
to construct the objective function and the constraint equations for the linear programming model
of the refinery.
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Table 3-4 Quality Specifications and Physical Properties for Products and Intermediate Streams

for the Refinery

Motor Vapor Sulfur

Octane Pressure Density Content
Stream Number mm H (1b/bbl) (1b/bbl)
Premium Gasoline >93.0 <12.7 - -
Regular Gasoline >87.0 <12.7 - -
Diesel Fuel - - <306.0 <0.5
Fuel Oil - - <352.0 <3.0
SRG 78.5 18.4 - -
RFG 104.0 2.57 - -
SRN 65.0 6.54 272.0 0.283
CCG 93.7 6.90 - -
CCFO - - 294.4 0.353
SRDS - - 292.0 0.526
SRFO - - 295.0 0.980

Table 3-5 Crude Oil Cost and Product Sales Prices for the Petroleum Refinery

Gulf Coast crude oil $32.00 / bbl
Premium gasoline $45.36 / bbl
Regular gasoline $43.68 / bbl
No. 2 diesel fuel $40.32 / bbl
No. 6 fuel oil $13.14 / bbl
Fuel gas $0.01965 / bbl or $3.50 MSCF

It is standard practice to present the linear programming problem for the refinery in matrix
form as shown in Figure 3-8. In the first row the coefficients of the terms in the objective function
are listed under their corresponding variables. The sales prices are shown as positive, and the cost
are shown as negative, so the problem is formulated to maximize the profit. These numbers were
taken from Table 3-5, and it was convenient to combine the crude cost ($32.00/Barrel) with the
operating cost of the crude oil atmospheric distillation column ($1.00/barrell) to show a total cost
of $33.00 per barrel of crude oil processed in Figure 3-8. Consequently, the first row of Figure 3-
8 represents the objective function given below:

-33.0 CRUDE + 0.01965 FGAD - 2.50 SRNRF + 0.01965 FGREF - 2-20 SRDSCC
-2.20 SRFOCC +0.01965 FGCC +45.36 PG +43.68 RG +40.32 DF + 13.14 FO

The constraint equations begin with the second row in Figure 3-8. They are grouped in
terms of quality and quantity constraints on the crude oil and products, in terms of the performance
of the process unit using the volumetric yields, and in terms of the stream splits among the process
units and blending into the products.
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The second row is the crude availability constraint limiting the refinery to 110,000
barrels/day. This is followed by the four quantity and quality constraints associated with each
product. These are the daily production and blending requirements and two quality constraints.
These have been extracted from Figure 3-8 and are shown in Table 3-6 for the four products. The
minimum production constraint states that the refinery must produce at least 10,000 barrels/day of
premium gasoline to meet the company's marketing division's requirements. The blending
constraints state that the sum of the streams going to produce premium gasoline must equal the
daily production of premium gasoline. The quality constraints use linear blending, and the sum of
each component weighted by its quality must meet or exceed the quality of the product. This is
illustrated with premium gasoline octane rating blending constraint which is written as the
following using the information from the matrix:

78.5 SRGPG + 104.0 RFGPG + 65.0 SRNPG + 93.7 CCGPG - 93.0 PG>0 (3-11)

Here the premium gasoline must have an octane number of at least 93.0. Corresponding, inequality
constraints are specified in Table 3-6 using the same procedure for premium gasoline vapor
pressure, regular gasoline octane number and vapor pressure, diesel fuel density and sulfur content
and fuel oil density and sulfur content.

The next set of information given in the constraint equation matrix, Figure 3-8, is the
description of the operation of the process unit using the volumetric yield shown in Table 3-3.
This section of the matrix has been extracted and is shown in Table 3-7 for the three process units.
Referring to the volumetric yields for the crude oil distillation column, these data states that 35.42
times the volumetric flow rate of crude produces the flow rate of fuel gas from the distillation

column, FGAD, i.e.:

35.42 CRUDE - FGAD =0 (3-12)
Corresponding yields of the other products from crude oil distillation are determined the same
way. For the catalytic reformer the yield of the fuel gas (FGRF) and the reformer gasoline (RFG)
are given by the following equations:

158.7 SRNRF - FGRF =0 (3-13)

0.928 SRNRF - RFG =0 (3-14)

Similar equations are used in the matrix, Figure 3-8, and are summarized in Table 3-7 for the
process units in the simple refinery.
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Table 3-6 Quantity and Quality Constraints for the Refinery Products

Premium Gasoline

SRGPG RFGPG SRNPG CCGPG PG RHS
Min. P.G. Production 1.0 >1,000
PG blending 1.0 1.0 1.0 1.0 -1.0 =0
PG octane rating 78.5 104.0 65.0 93.7 -93.0 >0
PG vapor pressure 18.4 2.57 6.54 6.90 -12.7 <0
Regular Gasoline

SRGRG RFGRG SRNRG CCGRG RG RHS
Min R.G. production 1.0 <10,000
RG blending 1.0 1.0 1.0 1.0 -1.0 =
RG octane rating 78.5 104.0 65.0 93.7 -87.0 <0
RG vapor pressure 18.4 2.57 6.54 6.90 -12.7 <0
Diesel Fuel

SRNDF CCFODF SRDSDF SRFODF DF RHS
Min D.F. production 1.0 > 10,000
DF blending 1.0 1.0 1.0 1.0 -1.0 =0
DF density spec. 272.0 294.4 292.0 295.0 -306.0 <O
DF sulfur spec. 0.283 0.353 0.526 0.980 -0.50 <0
Fuel Oil

CCFOFO SRDSFO SRFOFO FO RHS
Min. FO production 1.0 > 10,000
FO blending 1.0 1.0 1.0 - 1.0 =0
FO density spec. 294.4 292.0 295.0 -352.0 <0
FO sulfur spec. 0.353 0.526 0.980 -3.0 <0

The use of volumetric yields to give linear equations to describe the performance of the
process units is required for linear programming. The results will be satisfactory as long as the
volumetric yields precisely describe the performance of these process units. These volumetric

yields are a function of the operating conditions of the unit, e.g. temperature, feed flow rate,

catalyst activity, etc. Consequently, to have an optimal solution these volumetric yields must
represent the best performance of the individual process units.
volumetric yields with operating conditions sometimes a separate simulation program is coupled
to the linear programming code to furnish best values of the volumetric yields. Then an iterative
procedure is used to converge to the optimal operating conditions with corresponding values of

volumetric yields from the simulation program. (See Figure 4-5.)

85

To account for changes in



Table 3-7 Process Unit Material Balances using Volumetric Yields

CRUDE FGAD SRG SRN SRDS SRFO RHS

Crude oil atmospheric distillation column

AD Capacity 1.0 < 100,000
FGAD Yield 3542 -1.0 =
SRG Yield 0.270 - 1.0 =0
SRN Yield 0.237 - 1.0 =0
SRDS Yield 0.086 -1.0 =0
SRFO Yield 0.372 -1.0 =
Catalytic reformer

SRNRF FGRF RFG RHS
RF Capacity 1.0 < 25,000
FGREF Yield 158.7 - 1.0 =0
RFG Yield 0.928 - 1.0 =0

Catalytic cracking unit
SRDSCC SRFOCC FGCC CCG CCFO RHS

CC Capacity 1.0 1.0 < 30,000
FGCC Yield 3369 864 - 1.0 =0
CCG Yield 0.619  0.688 - 1.0 =
CCFOYield  0.189  0.220 - 1.0 =

The last group of terms in Figure 3-8 gives the material balance around points where
streams split among process units and blend into products. The stream to be divided is given a
coefficient of one, and the resulting streams have a coefficient minus one. For example, the
straight run naphtha from the crude oil distillation is split into four streams. One is sent to the
catalytic reformer and the other three are used in blending premium gasoline, regular gasoline and
diesel fuel. The equation for this split is:

SRN - SRNRF - SRNPG - SRNRG - SRNDF =0 (3-15)
There is a total of seven stream splits as shown in Figure 3-8.

The information is now available to determine the optimum operating conditions of the
refinery. There are 83 independent variables, and 38 constraint equations (23 equality constraints
and 15 equality constraints). The optimal solution was obtained using the Mathematical
Programming System Extended (MPSX) program run on the IBM 4341. The format used by this
linear programming code has become an industry standard according to Murtagh (12) and is not
restricted to the MPS series of codes developed originally for IBM computers. Consequently, we
will also describe the input procedure for the code because of its more general nature. Also, we
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will use these refinery results to illustrate the additional information that can be obtained from
sensitivity analysis. Similar, but not as detailed, results can be obtained using Excel.

Solving the Linear Programming Problem for the Simple Refinery

Having constructed the linear programming problem matrix, we are now ready to solve the
problem using a large linear programming computer program. The input and output for these
programs has become relatively standard (12) making the study of one beneficial in the use of any
of the others. The solution of the simple refinery has been obtained using the IBM Mathematical
Programming System Extended (MPSX). The detailed documentation is given in IBM manuals
(15, 16) and by Murtagh (12) on the use of the program, and the following outlines its use for the
refinery problem. The MPSX control program used to solve the problem is given in Table 3-8.
The first two commands, PROGRAM and INITIALZ, define the beginning of the program and set
up standard default values for many of the optional program parameters. TITLE writes the
character string between the quotation marks at the top of every page of output. The four MOVE
commands give user specified names to the input data (XDATA), internal machine code version
of the problem (XPBNAME), objective function (XOBJ), and right-hand-side vector (XRHS).
Next, CONVERT calls a routine to convert the input data from binary coded decimal (BCD) or
communications format into machine code for use by the program, and BCDOUT has the input
data printed. The next three commands, SETUP, CRASH and PRIMAL, indicate that the objective
function is to be maximized, a starting basis is created, and the primal method is to be used to solve
the problem. Output from PRIMAL is in machine code so SOLUTION is called to produce BCD
output of the solution. The RANGE command is used in the sensitivity analysis to determine the
range over which the variables, right-hand-sides and the coefficients may vary without changing
the basis. The last two statements, EXIT and PEND, signal the end of the control program and
return control over to the computer's operating system.

Input to the MPSX program is divided into four sections: NAME, ROWS, COLUMNS,
and RHS. The first two are shown in Table 3-9. The NAME section is a single line containing
the identifier, NAME, and the user-defined name for the block of input data that follows. (MPSX
has provisions for keeping track of several problems during execution of the control program).
When the program is run it looks for input data with the same name as that stored in the internal
variable XDATA. The ROWS section contains the name of every row in the model, preceded by
a letter indicating whether it is a non-constrained row (N), the objective function, a less-than-or-
equal-to constraint (L), a greater-than-or-equal-to constraint (G), or an equality constraint (E).

The COLUMNS section of the input data is shown in Table 3-10. It is a listing of the non-
zero elements in each column of the problem matrix (Figure 3-8). Each line contains a column
name followed by up to two row names and their corresponding coefficients from Figure 3-8.

The last input section is shown in Table 3-11. Here, the right- hand-side coefficients are
entered in the same way that the coefficients for each column were entered in the COLUMNS
section, i.e., only the non-zero elements. The end of the data block is followed by an ENDATA
card.
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The solution to the refinery problem is presented in Table 3-12 (a) and (b) as listed in the
printout from the MPSX program. It is divided into two sections, the first providing information
about the constraints (rows) and the second giving information about the refinery stream variables
(columns).

Table 3-8 Mathematical Programming System Control Program for the Simple Refinery

PROGRAM
INITIALZ

TITLE(SIMPLE REFINERY MODEL))
MOVE(XDATA, REFINERY")
MOVE(XPBNAME, REFINERY")
MOVE(XOBJ,'OBJ")

MOVE(XRHS, RHS")
CONVERT('SUMMARY")

BCDOUT

SETUP(MAX")

PICTURE

CRASH

PRIMAL

SOLUTION

RANGE

EXIT

PEND
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Table 3-9 MPSX Input NAME and ROWS Sections

NAME

~
o
=
v

esllesllesleslesHeslesHesHesHesHmileslesHmillesHesHesHesHesEmlalalcsEnlalalcsEalalinlesHal oo NesNa N el

REFINERY

OBJ
CRDAVAIL
PGMIN
PGBLEND
PGOCTANE
PGVAPP
RGMIN
RGBLEND
RGOCTANE
RGVAPP
DFMIN
DFBLEND
DFDENS
DFSULFUR
FOMIN
FOBLEND
FODENS
FOSULFUR
ADCAP
ADFGYLD
ADSRGYLD
ADNYLD
ADDSYLD
ADFOYLD
RFCAP
RFFGYLD
RFRFGYLD
CCCAP
CCFGYLD
CCGYLD
CCFOYLD
SRGSPLIT
SRNSPLIT
SRDSSPLT
SRFOSPLT
RFGSPLIT
CCGSPLIT
CCFOSPLT
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Table 3-10 MPSX Input COLUMNS Section

COLUMNS
CRUDE
CRUDE
CRUDE
CRUDE
FGAD
SRG
SRN
SRDS
SRFO
SRNRF
SRNRF
SRNRF
FGRF
RFG
SRDSCC
SRDSCC
SRDSCC
SRFOCC
SRFOCC
SRFOCC
FGCC
CCG
CCFO
SRGPG
SRGPG
RFGPG
RFGPG
SRNPG
SRNPG
CCGPG
CCGPG
PG
PG
PG
SRGRG
SRGRG
RFGRG
RFGRG
SRNRG

OBJ
ADCAP

ADSRGYLD

ADDSYLD
OBJ

ADSRGYLD

ADNYLD
ADDSYLD
ADFOYLD
OBJ
RFFGYLD
SRNSPLIT
OBJ
RFRFGYLD
OBJ
CCFGYLD
CCFOYLD
OBJ
CCFGYLD
CCFOYLD
OBJ
CCGYLD
CCFOYLD
PGBLEND
PGVAPP
PGBLEND
PGVAPP
PGBLEND
PGVAPP
PGBLEND
PGVAPP
OBJ
PGBLEND
PGVAPP
RGBLEND
RGVAPP
RGBLEND
RGVAPP
RGBLEND

-33.0
1.0
0.270
0.087
0.01965
-1.0
-1.0
-1.0
-1.0
-2.50
158.7
-1.0
0.01965
-1.0
-2.20
336.9
0.189
-2.20
386.4
0.2197
0.01965
-1.0
-1.0
1.0
18.4
1.0
2.57
1.0
6.54
1.0
6.90
45.36
-1.0
-12.7
1.0
18.4
1.0
2.57
1.0
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CRDAVAIL
ADFGYLD
ADNYLD
ADFOYLD
ADFGYLD
SRGSPLIT
SRNSPLIT
SRDSSPLT
SRFOSPLT
RFCAP
RFRFGYLD

RFFGYLD
RFGSPLIT
CCCAP
CCGYLD
SRDSSPLT
CCCAP
CCGYLD
SRFOSPLT
CCFGYLD
CCGSPLIT
CCFOSPLT

PGOCTANE

SRGSPLIT

PGOCTANE

RFGSPLIT

PGOCTANE

SRNSPLIT

PGOCTANE

CCGSPLIT
PGMIN

PGOCTANE

RGOCTANE

SRGSPLIT

RGOCTANE

RFGSPLIT

RGOCTANE

1.0
35.42
0.237
0.372
-1.0
1.0
1.0
1.0
1.0
1.0
0.928

1.0
1.0
1.0
0.619
-1.0
1.0
0.688
-1.0
-1.0
1.0
1.0
78.5
-1.0
104.0
-1.0
65.0
-1.0
93.7
-1.0
1.0
-93.0

78.5
-1.0
104.0
-1.0
65.0



Table 3-10 MPSX Input COLUMNS Section (continued)

CCFODF DFBLEND 1.0 DFDENS 294.4
CCFODF DFSULFUR 0.353 CCFOSPLT -1.0
SRDSDF DFBLEND 1.0 DFDENS 292.0
SRDSDF DFSULFUR 0.526 SRDSSPLT -1.0
SRFODF DFBLEND 1.0 DFDENS 295.0
SRFODF DFSULFUR 0.98 SRFOSPLT -1.0
DF OBJ 40.32 DFMIN 1.0
DF DFBLEND -1.0 DFDENS -306.0
DF DFSULFUR -0.5

CCFOFO FOBLEND 1.0 FODENS 294.4
CCFOFO FOSULFUR 0.353 CCFOSPLT -1.0
SRDSFO FOBLEND 1.0 FODENS 292.0
SRDSFO FOSULFUR 0.526 SRDSSPLT -1.0
SRFOFO FOBLEND 1.0 FODENS 295.0
SRFOFO FOSULFUR 0.98 SRFOSPLT -1.0
FO OBJ 13.14 FOMIN 1.0
FO FOBLEND -1.0 FODENS -352.0
FO FOSULFUR -3.00

Table 3-11 MPSX Input Right Hand Side Section

RHS
RHS CRDAVAIL 110000.0 PGMIN 10000.0
RHS RGMIN 10000.0 DFMIN 10000.0
RHS FOMIN 10000.0 ADCAP 100000.0
RHS RFCAP 25000.0 CCCAP 30000.0
ENDATA

In the ROWS section of Table 3-12(a) there are eight columns of output. The first is the
internal identification number given to each row by the program. The second column is the name
given to the rows in the input data. Next is the AT column which contains a pair of code letters to
indicate the status of each row in the optimal solution. Constraint rows in the basis have the code
BS, non-basis inequality constraints that have reached their upper or lower limits have the code
UL or LL. Equality constraints have the status code EQ. The fourth column is the row activity,
as defined by the equation:

Activity, = Zaijx ;
=

This is the optimal value of the left-hand side of the constraint equations. However, it is
computed by subtracting the slack variable from the right-hand side. The column labeled SLACK
ACTIVITY contains the value of the slack variable for each row. The next three columns are
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associated with sensitivity analysis. The sixth and seventh columns show the lower and upper
limits placed on the row activities. The final column, DUAL ACTIVITY, gives Lagrange
multipliers that are also called the simplex multipliers, shadow prices and implicit prices. As will
be seen subsequently in sensitivity analysis, they will relate changes in the activity to changes in
the objective function. Also, the dot in the table means zero, the same convention used in the
Simplex Tableau.

Examination of this section of output shows that the activity (or value) of the objective
function (row 1, OBJ) is 701,823.4, i.e., the maximum profit for the refinery is $701,823.40 per
day. Checking the rows which are at their lower limits, LL, for production constraints one finds
that only row 15, FOMIN, is at its lower limit of 10,000 bbl/day indicating that only the minimum
required amount of fuel oil should be produced. However, row 3, PGMIN, row 7, RGMIN, and
row 11, DFMIN, are all above their lower limits with values of 47,113 bbl/day for premium
gasoline, 22,520 bbl/day for regular gasoline, and 12,491 bbl/day for diesel fuel. More will be
said about the information in this table when sensitivity analysis is discussed.

The COLUMNS section of Table 3-12(b) for the optimal solution also has eight columns.
The first three are analogous to the first three in the ROWS section, i.e., an interval identification
number, name of the column, and whether the variable is in the basis BS or is at its upper or lower
limit, UL or LL. The fourth column, ACTIVITY, contains the optimal value for each variable.
The objective function cost coefficients are listed in the column INPUT COST. REDUCED COST
is the amount by which the objective function will be increased per unit increase in each non-basis
variable and is part of the sensitivity analysis. It is given by c;” of Equation (4-29).

For this simple refinery model there were 33 variables whose optimal value were
determined, and 38 constraint equations were satisfied. For an actual refinery there would be
thousands of constraint equations, but they would be developed in the same fashion as described
here. As can be seen, the model (constraint equations) was simple, and only one set of operating
conditions was considered for the catalytic cracking unit, catalytic reformer and the crude
distillation column.

If the optimal flow rates do not match the corresponding values for volumetric yields, a
search can be performed by repeating the problem to obtain a match of the optimal flow rates and
volumetric yields. This has to be performed using a separate simulation program that generates
volumetric yields from flow rate through the process units. (See Figure 3-5). Thus, the linear
model of the plant can be made to account for nonlinear process operations. Another procedure,
successive (or sequential) linear programming uses linear programming iteratively, also; and it
will be discussed in Chapter 5. The state of industrial practice using both linear programming and
successive linear programming is described by Smith and Bonner (13) for configuration of new
refineries and chemical plants, plant expansions, economic evaluation of investment alternatives,
assessment of new technology, operating plans for existing plants, variation in feeds, costing and
distribution of products, evaluation of processing and exchange agreements, forecasting of
industry trends and economic impact of regulatory changes.
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Table 3-12(a) MPSX Output for Optimal Solution, Section 1 - Rows

NUMBER ROW

OBJ
CRDAVAIL
PGMIN
PGBLEND
PGOCTANE
PGVAPP
RGMIN
RGBLEND
RGOCTANE
10 RGVAPP

11 DFMIN

12 DFBLEND
13 DFDENS

14 DFSULFUR
15 FOMIN

16 FOBLEND
17 FODENS

18 FOSULFUR
19 ADCAP

20 ADFGYLD
21 ADSRGYLD
22 ADNYLD
23 ADDSYLD
24 ADFOYLD
25 RFCAP

26 FGRFYLD
27 RFRFGYLD
28 CCCAP

29 CCFGYLD
30 CCGYLD
31 CCFOYLD
32 SRGSPLIT
33 SRNSPLIT
34 SRDSSPLT
35 SRFOSPLT
36 RFGSPLIT
37 CCGSPLIT
38 CCFOSPLT

O C0O~IN NI WN—

AT

BS
BS
BS
EQ
LL
BS
BS
EQ
LL
UL
BS
EQ
BS
UL
LL
EQ
BS
BS
UL
EQ
EQ
EQ
EQ
EQ
BS
EQ
EQ

ACTIVITY

701823.4
100000.0
47113.2

2188607.2
22520.4

12491.0
[165458.8
10000.0
1571996.8

-22286.7
100000.0

23700.0

30000.0

SLACK
ACTIVITY

-701823.4
10000.0
-37113.2

188607.2
12520.4

12491.0
165458.8

571996.8
22286.7

1300.0

93

LOWER
LIMIT

NONE
NONE
10000.0

NONE
10000.0
NONE
10000.0
NONE
NONE
10000.0
NONE
NONE
NONE

NONE

NONE

UPPER
LIMIT

NONE
10000.0
NONE
NONE
NONE
NONE
NONE

NONE

100000.0

25000.0

30000.0

DUAL
ACTIVITY

1.000

19.320
0.280

19.320
0.280

40.320

27.180
40.320

-8.154
0.01965
41.300
45.571
40.320
40.320

0.01965
48.440
5.274
0.01965
45.5560
40.3200
41.3000
45.5708
40.320
40.320
48.440
45.556
40.320



Table 3-12(b) MPSX Output for Optimal Solution, Section 2 - Columns

NUMBER COLUMN AT

39
40
41
42
43
44
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

CRUDE
FGAD
SRG
SRN
SRDS
SRFO
FGRF
RFG
SRDSCC
SRFOCC
FGCC
CCG
CCFO
SRGPG
RFGPG
SRNPG
CCGPG
PG
SRGRG
RFGRG
SRNRG
CCGRG
RG
SRNDF
CCFODF
SRDSDF
SRFODF
DF
CCFOFO
SRDSFO
SRFOFO
FO

BS
BS
BS
BS
BS
BS
BS
BS
LL
BS
BS
BS
BS
BS
BS
LL
BS
BS
BS
BS
LL
BS
BS
LL
BS
BS
BS
BS
BS
LL
BS
BS

ACTIVITY

100000.0
3542000.0
27000.0
23700.0
8700.0
37200.0
761190.0
21993.6

30000.0
11592000.0
20640.0
6591.0
13852.0
17240.0

16021.1
47113.2
13148.0
4753.6

4618.8
22520.4

3263.0
8700.0
528.0
12491.0
3328.0

6672.0
10000.0

INPUT
COST
-33.00
0.01965

0.01965

220
220
0.01965

4536
43.68

40.32

13.14

94

LOWER UPPER

LIMIT

LIMIT
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

REDUCED
COST

15.354

28.051

28.051

15251



Sensitivity Analysis

Having obtained the optimal solution for a linear programming problem, it would be
desirable to know how much the cost coefficients could change, for example, before it is necessary
to resolve the problem. In fact, there are five areas that should be examined for their effect on the
optimal solution. These are:

Changes in the right-hand side of the constraint equations, bi.
Changes in the coefficients of the objective function, c;.
Changes in the coefficients of the constraint equations, ajj.
Addition of new variables.

Addition of more constraint equations.

Nk =

Changes in the right-hand side of the constraint equations correspond to changes in the
maximum capacity of a process unit or the availability of a raw material, for example. Changes in
the coefficients of the objective function correspond to changes of the cost or the sale price of the
raw materials and products. Changes in the coefficients of the constraint equations correspond to
changes in volumetric yields of a process. Addition of new variables and constraint equations
correspond to the addition of new process units in the plant. It is valuable to know how these
various coefficients and parameters can vary without changing the optimal solution, and this may
reduce the number of times the linear programming problem must be solved.

Prior to doing this post-optimal analysis some preliminary mathematical expressions must
be developed for the analysis of the effect of the above five areas on the optimal solution. These
are the inverse of the optimal basis and the Lagrange multipliers. To obtain the matrix called the
inverse of the optimal basis, A**!, consider that the optimal basis has been found by the previously
described Simplex Method. There are m constraint equations and n variables as given by Equations
3-1a, b and c¢. For convenience, the nonzero variables in the optimal basis have been rearranged
to go from 1 to m, (x1*, x2*..., x»™, 0, ..., 0); and there are (n - m) variables not in the basis whose
value is zero. The optimal solution to this linear programming problem is indicated below where
x* contains only the m nonzero basis variables.

p=c'x" = opt c"x (3-16)

X
and

A'X"=b (3-17)

To solve for x*, both sides of the above equation are multiplied by the inverse of the optimal basis,
A*! whose elements are f; and obtain:

x = A*'p (3-18)
It should be noted that A*! may be obtained from the last step of the Simplex Method if all of the

constraint equations required slack variables. If not, then it has to be obtained from the original
formulation of the problem using the optimal basis found from the Simplex Method.
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The linear programming problem could be solved by the classical method of Lagrange
multipliers. However, the Simplex Method gives a systematic procedure for locating the optimal
basis. Having located the optimal basis by the Simplex Method, the Lagrange multiplier
formulation and the inverse of the optimal basis will be used to determine the effect of change in
the right-hand side on the optimal solution. Consequently, it is necessary to compute the values
of the Lagrange multipliers as follows. Multiplying each constraint Equation, (3-1b), by the
Lagrange multiplier /; and adding to the objective function Equation (3-1a), gives the following
equation.

[cl + iail/li

i=1

X +

m
c, +Eai2)ti]x2 o+

i=1

m m
|:Cm+l + Eai,mHA'i ]xm+l +...+ |:Cn + Eain)\’i
I

i=1

m
c, + Eaim&]xm +
i=1

(3-19)
X, =p+ »bAi

i=1

where x1 to x,, are positive numbers i.e. values of the variables in the basis, and x,+1 to x, are zero,
1.e. values of the variables that are not in the basis.

To solve this problem by classical methods the partial derivatives of p with respect to the
independent variables and the Lagrange multipliers would be set equal to zero. Taking the partial

derivatives of p with respect to the Lagrange multipliers just gives the constraint equations, and
taking the partial derivatives with respect to the independent variables, x;* (j = 1, 2, ...m) gives:

op “ C_
L —le. +Ya.*4 |=0 forj=1,2,....m (3-20)

J

and x;" for j=m + 1, ... n is zero, since X" is the optimal solution.

The values of the Lagrange multipliers are obtained from the solution of Equation (3-20).
Written in matrix notation, Equation (3-20) is:

¢+ A*T) =0 (3-21)
where A*7 is the transpose of the matrix A*.
Using the matrix identity [A*7]"! = [A*"!]7 and solving for the Lagrange multipliers gives:

A=-[A*]T¢ (3-22)
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In terms of the elements of the inverse of the optimal basis f;;, Equation (3-22) can be written as:

A==Y Byc; fori=12..,m (3-23)
Jj=l

With this as background, the effect of the five changes on the optimal solution can be
determined. The inverse of the optimal basis A*"! and the Lagrange multipliers will be used to
evaluate these changes. The following example illustrates the computation of the inverse of the
optimal basis and the Lagrange multipliers.

Example 3-6

Solve the following problem by the Simplex Method and compute the inverse of the optimal basis
and the Lagrange multipliers:

maximize: 2x1+ x2tx3
subject to: x1t+ x2+x3<10
X1+ 5x2+x3>20

Adding slack variables gives:

maximize: 2x1+ x2+x3 =p
subject to: x1+t x2+x3+txs =10
x1+5x2+x3 -x5=20

An initially feasible basis is not available, and either artificial variables or algebraic manipulations
must be performed to obtain one. Algebraic manipulations are used to have x; and x> be the
variables in the basis. The result is:

-x3  -9/4xs- 1/4xs =p-17% p =17%
X1 +x3  +5/4xs- 1/4xs = 7% x1= TV
+ X2 - 1/4x4 - 1/4x5 = 2% x2= 2%
x3=10
x4=0
xs5=0
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This is the optimum since all of the coefficients of the non-basic variables in the objective function
are negative. Knowing the optimal solution, the original problem now takes the form:

maximize: 2x1+ x2 =17%
subject to: x1t x2 =10
x1+ 5x2 =20

The inverse of the optimal basis is computed using the co-factor method.
A =1 ]
a7
where || A¥ji || = || A% || I and || A% || are the co-factors of the matrix A*.(8)

I 1 5 -1
o b e

L, | 5/4 —1/4 4 5/4 -1/4|1 1 1 0
A% = and A* A*= =
-1/4 1/4 -1/4 1/4 |1 5| |0 1
The Lagrange multipliers are computed using Equation (3-22)

h=-[A=1]T¢c

s A H S o

M=-94 and = Y4

or

Changes in the Right-Hand Side of the Constraint Equations: Changes in the right-
hand side of the constraint equations, i.e. changes in the b;'s, will cause changes in the values of
the variables in the optimal solution, the x;'s. For an optimal solution to remain optimal, the x;'s
cannot become negative. Equation (3-18) will be used to evaluate changes in the x;'s caused by
changes in the b/'s. The jth component of Equation 3-18 is used.

x, =) Bb, for j=12..m (3-24)
i=l

For a change in b; of an amount Ab;, the new value of x;", called x"new is:
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X = DBk, +Ab) for j=12,....m
i=1
and

xjm,zx*jJrZﬂﬁAb[ for j=12,..,m (3-25)
i=1

For the optimal solution x” to remain optimal the values of xjnew must not become negative. The
problem must be resolved if any of the x;'s becomes negative.

The change in the value of the objective function for changes in the b/'s, is computed using

Equation (3-19). Since the left-hand side of Equation 3-19 is zero at the optimum, it can be written
as:

p¥*=—>» b.A (3-26)
Using the same procedure for the change Ab;, the change in the value of the objective function is:

P en = _Z (b, +AD),

i=1
P* e =P* =Y Ab, (3-27)
i=1

It is from this equation that the Lagrange multipliers receive the name shadow prices since they
have dimensions of dollars per unit and are used to compute the new value of the objective function
from changes in the b;'s. This is called a marginal cost calculation.

Generally, in large linear programming computer programs part of the computations
includes the calculation of x"new and pnew for upper and lower limits on the b;'s. Also, values of
the Abi's can be computed that will give the largest possible change in the x;™s, i.e. Xjnew = 0.
Simultaneous changes in the right-hand side of the constraint equations can be performed using
the 100% rule, and this procedure is described by Bradley et al (19).

Example 4-7

For the problem given in Example 4-6, find the new optimal solution for Ab; = -5 without resolving
the problem. Using Equation (3-25) to compute the changes in the x;'s gives:

Xlnew = X1+ P11 Ab1 + f12 Ab2

Xonew = X2+ P21 Ab1 + 22 Aba
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Substituting in the values for Ab; = -5 and Ab, = 0 gives
Xinew = 71Y2+ 5/4(-5) =5/4
Xonew = 22 + (-Y4) (-5)=15/4
Using Equation (4-27) the change in the objective function is computed as:
Pnew =p" - [M Abr + X2 Ab2] = 17% - (-9/4) (-5)
Plnew =25/4 = 6Y4
The optimal solution remains optimal, but the profit decreases from 17 72 to 6%.

Changes in the right-hand side of the constraint equations are part of the sensitivity analysis
of the MPSX program. In Table 3-12(a) the smallest and largest values of the right-hand side of
the constraint equations are given for the optimal solution to remain optimal as LOWER LIMIT
and UPPER LIMIT. Also, the Lagrange multipliers were computed, and these are called the
DUAL ACTIVITY in the MPSX nomenclature of Table 3-12(a). In this table NONE indicates
that there is no bound, and a dot indicates that the value was zero. Correspondingly, in Table 3-
12(b) the upper and lower limits on the variables are given. In this case the dot indicates that the
lower bound was zero, and NONE indicates that there was no upper bound on the variable because
BOUNDS was not used.

Changes in the Coefficients of the Objective Function: It is necessary to consider the
effect on the optimal solution of changes in the cost coefficients of the variables in the basis and
those not in the basis also. Referring to Equation (3-19), the coefficients of the variables that are
not in the basis, i.e., Xu+1, ..., X, must remain negative for maximization.

{cj+2aij/li}<0 for j=m+1...,n (3-28)
i=1

If a coefficient becomes positive from a change in the cost coefficients, it would be profitable to
have that variable enter the basis.

The values of the Lagrange multipliers are affected by changes in the cost coefficients of
the variables in the basis, since they are related by Equation (3-23). The term in the brackets in
Equation (3-28) is named the reduced cost (19), and it is convenient to define this term as ¢} to

obtain the equation that accounts for the effect of changes in cost coefficients on the optimal
solution.

c;:{cj+2aijﬂi}<0 for j=m+1...,n (3-29)
=1

where c’; must remain negative for the optimal solution to remain optimal for maximizing.
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The Lagrange multipliers, A/'s, are eliminated from Equation (3-29) by substituting
Equation (4-23) to give:

m

= i Uzﬁkick for j=m+1,...,n

i=1 k=1
or

m m

c; =c; _EEaijﬁkick for j=m+1,...,n (3-30)

i=1 k=1

For a change, Acj, in the non-basic variable cost coefficient, ¢;, and for a change, Ac, in the basic
variables cost coefficient ck, it can be shown that the following equation holds:

m

c]new =c'+Ac, _EAckEaljﬁki forj:m+l,...,n (3-31)

k=1 k=1

When maximizing, the new coefficients must remain negative for the variables not in the basis to
have the optimal solution remain optimal, i.e.

C} new < 0 (3-32)

If Equation (3-32) does not hold then a new optimal solution must be obtained by solving the linear
programming problem with the new values of the cost coefficients.

If the optimal solution remains optimal, the new value of the objective function can be
computed with the following equation:

p >l<new = p * +E ‘xkAck (3_33)

k=1

If the problem must be resolved, it is usually convenient to introduce an artificial variable
and proceed from this point to the new optimal solution. Large linear programming codes usually
have this provision. Also, they can calculate a range of values of the cost coefficients where the
optimal solution remains optimal and the corresponding effect on the objective function. The
procedure used is called the 100% rule and is described by Bradley, et al. (19).

Example 3-8
For the problem given in Example 3-6 compute the effect of changing the cost coefficient ¢1 from

2to 3 and ¢3 from 1 to 4, i.e. Act = 1 and Acz = 3. Using Equation 3-31 produces the following
results for j =3, 4, 5 (since Acz = 0).
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C3new = C3 + Aci[aisfii + axfiz]

substituting

Canew =-1 43 - (D[(1)(5/4) + (1)(-%)] =1

Canew = Ca+ Acs - Aci[aiafi1 + azafi2]
substituting

Canew =-9/4+0 - (D[(1)(5/4) + (0)(-Y4)] = -13/4

Csnew = C5 + Acs - Aci[aispi + azspiz]
substituting

C'spew = -Ya + 0 - (D[(0)(5/4) + (-1)(-a)] = -%

An improvement in the objective function can be obtained, for c3new is greater than zero.
Increasing x3 from zero to a positive number will increase the value of the objective function.
However, the problem will have to be resolved.

In the MPSX program, the RANGE command and the parametrics are used to find the
range over which the variables, right-hand-sides and the coefficients of the objective function and
constraints, may be varied without changing the basis for the optimal solution. Output from the
RANGE command consists of four sections: sections 1 and 2 for rows and columns at their limit
levels, and sections 3 and 4 for rows and columns at an intermediate level (in the basis) which will
be described here. Further information is given in references (12, 15 and 16).

In Table 3-13 the RANGE output is shown for constraint rows at upper and lower limit
levels. The first four columns have the same meaning as in the output from SOLUTION. The
next four have two entries for each row. LOWER ACTIVITY and UPPER ACTIVITY are the
lower and upper bounds on the range of values that the row activity (right-hand side) may have.
Since the slack variable for the row is zero at a limit level, the upper and lower activities are
numerically equal to the bounds of the range that the right-hand sides may have. The two UNIT
COST entries are the changes in the objective function per unit change of activity when moving
from the solution activity to either the upper or lower bound. The column labeled LIMITING
PROCESS contains the name of the row or column that will leave the basis if the activity bounds
are violated. The status column, AT, indicates the status of the leaving row or column. For
example, in line 15 of Table 3-13 the row FOMIN is at its lower limit, its activity value is 10,000,
and the right-hand side may take on values between 5,652.8 and 12,252.2 without changing the
basis. If FOMIN exceeds 12,252.2, then SRFODF would leave the basis. If FOMIN goes below
5,652.8, then CCFODF would leave the basis. The cost associated with a change in FOMIN is
$27.18/bbl with profit decreasing for an increase in FOMIN.
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Table 3-13. MPS Output, RANGE: Rows at Limit Level
Section 1 - rows at limit level

Lower Activity Unit Cost Limiting AT

Number Row AT Activity Upper Activity Unit Cost Process AT
4 PGBLEND EQ -1530.74 19.320 SRGPG LL
807.77 -19.320 RGMIN LL
5 PGOCANE LL -75122 38 0.28 RGMIN LL
142358.38 -0.28 SRGPG LL
8 RGBLEND EQ -157.39 19.320 CCGRG LL
184.70 -19.320 RFGRG LL
9 RGOCTAN LL -18739.35 0.280 RFGRG LL
17326.68 -0.280 CCGRG LL
10 RGVAPP UL -16460.63 RFGRG LL
9533.63 . CCGRG LL
12 DFBLEND EQ -4091. 76 40.320 CCFODF LL
541.56 -40.320 DFDENS UL
14 DFSULFUR UL -331.08 SRFODF LI
2045.89 . CCFODF LL
15 FOMIN LL 10000.0 5652.8 27.180 SRFODF LL
12252.2 -27.180 SRFODF LL
16 FOBLEND EQ -4347.24 40.320 CCFOFO LL
1941.99 -40.320 FODENS UL
19 ADCAP UL 100000.0 94572.99 -8.154 DFMIN LL
105485.23 8.154 RFCAP UL
20 ADFGYLD EQ -INFINITY  0.01965 NONE
3541999.0 -.01965 FGAD LL
21 ADSRGYLD EQ -26197.55 41.300 PGMIN UL
5180.85 -41.300 RGMIN LL
22 ADNYLD EQ -1300.0 45.570 RFCAP LL
13394.25 -45.570 RFGPG LL
23 ADDSYLD EQ -12733.73 40.320 SRFODF LL
2490.99 -40.320 DFMIN LL
24 ADFOYLD EQ -4347.24 40.320 CCFOFO LL
2252.22 -40.320 SRFODF LL
26 FGRYLD EQ -INFINITY  0.01965 NONE
3761190.0 -.01965 FGRF LL
27 RFRFGYLD EQ -6829.31 48.440 RGMIN LL
12429.87 -48.440 RFGFG LL
28 CCAP UL  30000,00 25926.81 -5.274 CCFOFO LL
32886.36 5.274 SRFODF LL
29 CCFGYLD EQ -INFINITY  0.01965 NONE
11591992.0 -.01965 FGCCF LL

103



Table 3-13. Continued

Lower Activity Unit Cost Limiting AT
Number Row AT Activity Upper Activity Unit Cost Process AT
30 CCGYLD EQ . -107317 .69 45.556 RGMIN LL
15646.77 -45.556 CCGPG LL
31 CCFGYL EQ -28457.97  40.320 SRFDFO LL
2252.22 - 40.320 SRFODF LL
32 SRGSPLIT EQ . -26197.55 *41.300 PGIMIN LL
5180.85 -41.300 RGMIN LL
33 SRNSPLIT EQ . -1300.0 45.570 RFCAP UL
13394.25 -45.570 RFGFG LL
34 SRDSSPLT EQ . 12733.73 40.320 SRFIDF LL
2490.9 -40.320 DFMIN LL
35 SRFOSPLT EQ . -4347.24 40.320 CCFOFO LL
2252.22 -40.320 SRFODF LL
36 RFGSPLIT EQ . -6829.87 48.440 RGIIN LL
12429.87 -48.440 RFGFG LL
37 CCGSPLIT EQ . -107317.69  45.566 RGMIN LL
15646.77 -45.566 CCGPG LL
38 CCFOSPLT EQ . -28457.97 40.320 SRFDFO LL
2252.22 -40.320 SREODF LL

Similar information is provided in Table 3-14 about the range over which the nonbasis
activities (variables) at upper or lower limits may be varied without forcing the row or column in
LIMITING PROCESS out of the basis. An additional column is included in the table, LOWER
COST/UPPER COST to show the highest and lowest cost coefficients at which the variable will
remain in the basis. If the objective function cost coefficient goes to the LOWER COST, the
activity will increase to UPPER ACTIVITY. Similarly, if its cost goes below UPPER COST, the
activity will be decreased to LOWER ACTIVITY.

The third section of output from the range study is given in Table 3-15. It contains
information about constraints that are not at their limits and, therefore, are in the basis of the
optimal solution. The column headings have the same meaning as the headings for section 1 except
that here the variable listed under LIMITING PROCESS will enter the basis if the bounds are
exceeded.

The fourth section, shown in Table 3-16, gives the RANGE analysis of the variables listed

under the columns in the basis. As in Table 3-15 the variable listed under LIMITING PROCESS
will enter the basis when activity is forced beyond the upper or lower activity bounds.
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Table 3-14 MPS Output, RANGE: Columns at Limit Level

SECTION 2 — Columns at Limit Level

Input Lower Activity Unit Cost

Lower Cost Limiting AT

Number Column AT  Cost Upper Activity Unit Cost Upper Cost Process AT
48 SRDOCC LL -2.20 -1964.99 5.353 -Infinity = SRFODF LL
4550.96 -5.353 3.128 CCFOFO LL
55 SRNPG LL -1300.00 8.051 -Infinity = RFCAP UL
3725.88 -8.051 8.046 SRGPG LL
60 SRNRG LL -615.85 8.051 -Infinity ¥ RFGRG LL
543.39 -8.051 8.046 CCGRG LL
63 SRNOF LL -1300.00 5.250 -Infinity ¥ RFCAP UL
9428.02 -5.250 5.251 CCFODF LL
69 SRDSFO LL -1913.74 -Infinity = SRFODF UL
4596.20 0.000 CCFOFO LL
Table 3-15 MPS Output, RANGE: Rows at Intermediate Level
Section 3 - rows at intermediate level
Slack Lower Activity Unit Cost Limiting AT
Number Row AT Activity Activity Upper Activity Unit Cost Process AT
2 CRDAVAIL BS 100000.0 10000.0 94572.98 -8.154 ADCAP UL
100000.0 -INFINITY NONE
3 PGMIN BS 47113.0 -37113.2 23655.1 -1.278 SRNPG LL
47113.2 -INFINITY NONE
6 PGVAPP BS -188607.2 188607.21 -188607.16  -INFINITY  NONE
-172146.52 . RGVAPP UL
7 RGMIN BS 225204 -12520.4 21167.53 -32.710 ADCAP LL
46246.79 -1.264 SRNPG UL
11 DFMIN  BS 12490.9 -2490.9  9592.13 -17.765 ADCAP UL
21919.02 -5.251 SRNDF LL
3 DFDENS BS -165458.8 165458.8 -165775.57 DFSULFUR UL
-153666.96 SRDSFO LL
17 FODENS BS -571996.8 571966.8 -583788.53 SRDSFO LL
-571679.93 . DFSULFUR UL
18 FOSULFUR BS -22286.7 22286.7 -27917.23 -10.872 FOMIN LL
-21955.59 . DFSULFUR UL
25 RFCAP  BS 23700.0 1300.0 14271.68 -5.251 SRNDF UL
23700.00 -INFINITY NONE
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The information of greatest interest here are the entries for columns with coefficients in the
objective function. These are: CRUDE (39), FGAD(40), SRNRF(45), FGRF(46), SRFOCC(49),
FCCC(50), PG(57), RG(62), DF(67), and FO(71). Examining the first row in Table 3-16, one
finds that if the cost coefficient becomes -41.15, the activity (crude flow rate) would be reduced
from 100,000 to 94,572.98. Consequently, if the cost of crude oil is increased to $40.09/bbl
(operating cost is $1.00/bbl) the refinery should reduce its throughput by only 5.2%. Also notice
that the lower cost for premium gasoline (PG) is 44.082 while the input cost is 45.35. If the bulk
sale price of premium gasoline were to drop to $44.08/bbl., it would be profitable for the refinery
to produce 23,661 bbl/day, a drop of almost 50% from the optimum value of 47,111bbl/day
currently produced. A similar analysis for fuel oil (FO) indicates that it will probably never be
profitable to produce fuel oil since the sale price would have to increase from $13.14/bbl to
$40.32/bbl before production should be increased above the minimum.

Changes in Coefficients of the Constraint Equations: Referring to Equation 3-29 it is
seen that changes in the a;'s for the non-basic variables will cause changes in ¢;. For the optimal
solution to remain optimal ¢; < 0 when maximizing; and if not, the problem must be resolved. To
evaluate the changes in the coefficients of the constraint equations, a;;, several pages of algebraic
manipulations are required. This development is similar to the ones given here for the b/'s and ¢/'s,
and is discussed in detail by Garvin (3) and Gass (4) along with the subject of parametric
programming, i.e., evaluating a set of ranges on the a;'s, b/'s and ¢;'s where the optimal solution
remains optimal. Due to space limitations these results will not be given here. Also, the MPSX
code has the capability of making these evaluations as previously mentioned.

Addition of New Variables: The effect of adding new variables can be determined by
modifying Equation 4-19. If k new variables are added to the problem then & additional terms will
be added to Equation 4-19, and the coefficient of the kth term is:

[ka + E ai,n+k2'i] (3-34)
il

Each of these & terms can be computed with the available information. If all of these are less than
zero, the original optimal solution remains at the maximum. If Equation 3-34 is greater than zero,
the solution can be improved; and the problem has to be resolved. Artificial variables are normally
used to evaluate additional variables to obtain new optimal solution.
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Table 3-16 MPS Output, RANGE: Columns at Intermediate Levels

Section 4 — columns at intermediate level

Number Row AT

Input Lower Activity
Activity Cost Upper Activity Unit Cost

Lower Cost Limiting
Upper Cost Process AT

39

40

41

42

43

44

45

46

47

49

50

51

52

53

54

56

57

58

59

CRUDE BS
FGAD BS
SRG  BS

SRN  BS

SRDS BS

SRFO BS

SRNRF BS

FGRF BS

RFG  BS

SRFOCC BS 30000.0

CCG BS

CCFO BS
SRGPG BS
RFGPG BS
CCGPG BS
PG BS
SRGRG BS

RFGRG BS

100000.0 -33.0 94573.0 -8.154
100000.0  -INFINITY
3541999.0 0.01965 3349774.0 -.2302
3541999.0 -INFINITY
27000.0 25534.7 -30.200
27000.0 -INFINITY
23699.9 22413.8 -34.405
23699.9 -INFINITY
8699.9 8227.8 -93.726
8699.9 -INFINITY
37199.9 35181.1 -21.919
37199.9 -INFINITY
23699.9 -2.50 14271.9 -5.251
23699.9 -INFINITY
3761190.0 0.01965 2264964.1-.0331
3761190.  —INFINITY
21993.6 13244.4 -5.658
21993.6 -INFINITY
-2.20 25926.8 -5.274
30000.0 -INFINITY
FGCC BS 11591992.0 0.01965 10018114.0 -.01365
11591992.0 -INFINITY
20640.0 17837.6 -7.665
20640.0 -INFINITY
6590.9 5696.1 -24.003
6591.0 -INFINITY
13852.0 10510.6 -1.309
17073.2 .
17240.0 12541.4 -0.931
21993.6
16021.2 8046.4 .
20640.0 -0.947
47113.2 4536 23655.1 -1.279
47113.2 -INFINITY
13148.0 9926.8 .
16489.4 -1.309
4753.6 -4796.2 .
8947.9 -1.043
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-41.154
INFINITY
-0.210
INFINITY
-30.201
INFINITY
-34.405
INFINITY
-93.726
INFINITY
-21.919
INFINITY
-7.750
INFINITY
-.0134
INFINITY
-5.658
INFINITY
-7.474
INFINITY
0.006
INFINITY
-7.665
INFINITY
-24.003
INFINITY
-1.309

-0.931
0.947
44.081
INFINITY

1.309

1.043

ADCAP UL
NONE
ADCAP UL

NONE
ADCAP UL
NONE
ADCAP UL
NONE
ADCAP UL
NONE
ADCAP UL
NONE
SRNDF UL
NONE
SRNDF LL
NONE
SRNDF UL
NONE
CCCAP UL
NONE
CCCAP UL
NONE
CCCAP UL
NONE
CCCAP UL
NONE
SRNRG LL
RGVAPP UL
SRNRG LL
RGVAPP UL
RGVAPP UL
SRNRG LL
SRNPG LL
NONE
RGVAPP UL
SRNRG LL
RGVAPP UL
SRNRG LL



Table 3-16 MPS Output, RANGE: Columns at Intermediate Levels

Section 4 — columns at intermediate level

Input Lower Activity
Number Row AT Activity Cost Upper Activity

Lower Cost Limiting
Unit Cost Upper Cost Process AT

61

62

64

65

66

67

68

70

71

CCGRG BS 4618.8 -12328.6
12593.6
RG BS 22520.4 43.68 21167.5
46246.8
CCFODF BS 3263.0 -1372.7
3791.0
SRDSDF BS 8700.0 4103.8
8700.0
SRFODF BS  528.0 -2800.0
1796.2
DF BS 12491.0 40.32 10000.0
21919.0
CCFOFO BS 3328.0 2800.0
6591.0
SRFOFO BS 6672.0 5403.8
7200.0
FO BS 10000.0 13.14 10000.0
12252.2

-0.947  0.947 SRNRG
. . RGVAPP
-32.710  10.970 ADCAP
-1.264  44.944 SRNPG
-15.172  15.172 SRNDF
-0.000 DFSULFUR
. 0.000 SRDSFO
-INFINITY INFINITY

. DFSULFUR
. -0.000 SRDSFO LL
-17.7652  2.555 ADCAP

-5.250 45.570 SRNDF
. 0.000 DFSULFUR
5.172 15.172 SRNDF
SRDSFO
. . DFSULFUR
-INFINITY -INFINITY
-27.180 40.320 FOMIN

LL
UL
LL
LL
LL
UL
LL
NONE
UL

UL
LL
UL
LL
LL
UL
NONE
LL

Addition of More Constraint Equations: For the addition of more constraint equations

the procedure is to add artificial variables and proceed with the solution to the optimum. The
artificial variables supply the canonical form for the solution. The following example shows the
effect of adding an additional independent variable and an additional constraint equation to a linear
programming problem to illustrate the application of the methods described above.

Example 3-9

Solve the linear programming problem using the Simplex Method

minimize:

subject to:

X1 - 3x
3x1 - x2<7

2x1+ dx <12
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Introduce slack variables x3 and x4 for an initially feasible basis and ignore the terms with xs in
parentheses for now. This gives:

X1 - 3x2 (+2x5) =c ¢ =0
3x1 - x2+x3 (+2x5) =7 x3=17
2x1 +4x + X4 =12 x4=12
x1=0
x=20

Applying the Simplex Method x> enters and x4 leaves the basis. Performing the algebraic
manipulations gives:

- 0.5x; + 0.75x4 (+2x5) =c+9 c=-9
2.5x1 +x3 + 0.25xs (+ 2xs5) =10 x3=10
-0.5x1 +x2 + 0.25x4 =3 x=13
x1=0

x4=0

Applying the Simplex Method x| enters and x3 leaves the basis giving the following results:

0.2x3 +0.8x4(+2.4xs5)=c+11 c =-11

X1+ 0.4x3 +0.1xs (-0.8x5)=4 x1= 4
x2+  0.2x3 +0.3x4(+0.4x5)=5 x= 5

x3= 0

x4= 0

The optimal solution has been obtained since all of the coefficients of the variables in the objective
function (not in the basis) are positive.

We compute the inverse of the optimal basis A*-1 and the Lagrange multipliers, having
obtained the optimal solution as follows:
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3 -1
-2

A% = |AH=10 |A,*=

4 2| 4ue_| 2/5 1710
13 1/5 3/10

| — |

For Lagrange multipliers Equation 3-22 is used:

h=-[A*'T¢
and substituting gives
Ao_ | 2/5 1710 || 1 |_| 1/5
2, 1/5 3/10 || -3 4/5

If the first constraint equation is changed as follows by adding another variable xs:
3x1-x2+2x5<7

and the objective function is changed by including x5 as shown below:
X1 - 3x2 + 2xs

Determine how this addition of a new variable affects the optimal solution found previously. The
linear programming problem now has the following form:

X1 - 3x2+ 2xs =c
3x1 - X2+ 2x5+ X3 =7
-2x1 + 4x; +x4 =12

To determine if the optimal solution remains optimal, Equation 3-34 is used. For this problem »
=4, k=1 and m =2, and Equation 3-34 has the form:

[cs +aish + axs ko]
substituting gives:

[2 +2(1/5) + 0(4/5)] =2.4>0

The optimal solution remains optimal since Equation 3-34 is positive for this case, and it is not
necessary to resolve the problem. xs is not in the basis and has a value of zero.

The terms in parenthesis show the solution with the additional variable included. As can be seen
the coefficient at the final step is the same as computed using Equation 3-34.
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Find the new optimal solution if the following constraint equation is added to the problem
-4x1 + 3x2+ 8xs +x6 =10

The constraint equation is added to the optimal solution set so the problem will not have to be
completely solved and is:

0.2x3 +0.8x4 +2.4x;5 =c+11
x1+ 0.4x3 +0.1xs - 0.8xs =4
x2 + 0.2x3+0.3x4 + 0.4x5 =5
-4x1+ 3x2 + 8xs+xs =10

X6 1s used as the variable in the basis from the additional constraint equation. xi and x; are
eliminated from the added constraint equation by algebraic manipulation and gives:

0.2x3 + 0.8x4 + 2.4x5 =c+11 c =-11
X1 +0.4x3 + 0.1x4 - 0.8xs5 =4 x1=4
x2 +0.2x3 + 0.3x4 + 0.4x5 =35 x2=35
x3- 0.5x4 + 10x5 +x¢ = 11 x6=11
x4=0
xs5=0

The new optimal solution has been found since all of the coefficients in the objective function are
positive. Artificial variables would normally have been used, especially in a computer program,
to give a feasible basis and proceed to the optimum.

Closure

In this chapter the study of linear programming was taken through the use of large computer
codes to solve industrial problems. Sufficient background was provided to be able to formulate
and solve linear programming problems for an industrial plant using one of the large linear
programming codes and to interpret the optimal solution and associated sensitivity analysis. In
addition, this background should provide the ability for independent reading on extensions of the
subject.

The mathematical structure of the linear programming problem was introduced by solving
a simple problem graphically. The solution was found to be at the intersection of constraint
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equations. The Simplex Algorithm was then presented which showed the procedure of moving
from one intersection of constraint equations (basic feasible solution) to another and having the
objective function improve at each step until the optimum was reached. Having seen the Simplex
Method in operation, the important theorems of linear programming were discussed which
guaranteed that the global optimum would be found for the linear objective function and linear
constraints. Then methods were presented which illustrated how a process flow diagram and
associated information could be converted to a linear programming problem to optimize an
industrial process. This was illustrated with a simple petroleum refinery example, and the solution
was obtained using a large standard linear programming code, Mathematical Programming System
Extended (MPSX), on an IBM 4341 computer. The chapter was included with a discussion of
post-optimal analysis procedures that evaluated the sensitivity of the solution to changes in
important parameters of linear programming problem. This sensitivity analysis was illustrated
using simple examples and results from the solution of the simple refinery using the MPSX code.

A list of selected references is given at the end of the chapter for information beyond that
presented here. These texts include the following topics. The Revised Simplex Method is a
modification of the Simplex Method that permits a more accurate and rapid solution using digital
computers. The dual linear programming problem converts the original or primal problem into a
corresponding dual problem that may be solved more readily than the original problem. Parametric
programming is an extension of sensitivity analysis where ranges on the parameters, a;'s, b/'s and
¢j's, are computed directly considering more than one parameter at a time. Also, there are
decomposition methods that take extremely large problems and separate or decomposes them into
a series of smaller problems that can be solved with reasonable computer time and space. In
addition, special techniques have been developed for a class of transportation and network
problems that facilitate their solution. Linear programming has been extended to consider multiple
conflicting criteria, i.e., more than one objective function, and this has been named goal
programming. An important extension of linear programming is the case where the variables can
take on only integer values, and this has been named integer programming. Moreover, linear
programming and the theory of games have been interfaced to develop optimal strategies. Finally,
almost all large computers have one or more advanced linear programming codes capable of
solving problems with thousands of constraints and thousands of variables. It is very time
consuming and tedious task to assemble and enter reliable data correctly in using these programs.
These codes, e.g. MPSX, are very efficient and use sparse matrix inversion techniques, methods
for dealing with ill-conditioned matrices, structural data formats and simplified input and output
transformations. Also, they usually incorporate post optimal ranging, generalized upper bounding
and parametric programming (9,12). Again, the topics mentioned above are discussed in the
articles and books in the References and the Selected List of Texts at the end of the chapter.
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Selected List of Texts on Linear Programming and Extensions

Bazaraa, M. S., and J. J. Jarvis, Linear Programming and Network Flows John Wiley and Sons,
Inc., New York (1977).

Charnes, A. and W. W. Cooper, Management Models and Industrial Applications of Linear
Programming, Vol. 1 and 2, John Wiley and Sons, Inc., New York (1967).

Garfinkel, R. S., and G. L. Nemhauser, Integer Programming, John Wley and Sons, Inc., New
York (1972).

Glicksman, A. M., An Introduction to Linear Programming and the Theory of Games, John Wiley
and Sons, Inc., New York (1963).

Greenberg, Harold, Integer Programming, Academic Press New York (1971).

Hadley, G. H., Linear Programming, Addison-Wesley, Inc., Reading, Mass. (1962)

Land, A. H., and S. Powell, Fortran Codes for Mathematical Programming: Linear, Quadratic
and Discrete, John Wiley and Sons, Inc. New York (1973).

Lasdon, Leon, Optimization Theory for Large Systems, Macmillan and Co., New York (1970).

Naylor, T. H., and E. T. Byrne, Linear Programming Methods and Cases, Wadsworth Publ. Co.,
Balmont, Calif. (1963).

Orchard-Hays, Wm., Advanced Linear Programming Computing Techniques, McGraw-Hill Book
Co., New York (1968).
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Problems
3-1.  Solve the following problem by the Simplex Method:
Maximize: 6x1+ x2=p
Subject to: 3x1 +5x <13
6x1+ x<12
x1 5% <10

Determine the range on x1 and x; for which the optimal solution remains optimal. Explain.
(Note: It is not necessary to use sensitivity analysis.)

3-2.  Solve the following problem by the Simplex Method:

Maximize: X1+ 2x2+3x3 - x4 =p
Subject to: x1+2x2+3x3 + x5 =15
2x1+ x2+ 5x3 +x6 =20

x1+2x+ x3+x =10

Start with x4, x5, and x¢ in the basis.
3-3. a. Solve the following problem by the Simplex Method:
Maximize: 2x1+ x2 =p
Subject to: x1+t x <6
X1- x2<2
x1+2x <10
x1- 2x2 <1

b. Compute the inverse of the optimal basis and the largest changes in b/'s for the
optimal solution remain optimal.
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3-4.  Solve the following problem by the Simplex Method:
Maximize:  3x1+2x2=p
Subject to: x1t x<8
2x1+ x <10
3-5. a. Solve the following problem by the Simplex Method:
Maximize: X1+2x=p
Subject to: x1+3x <105
x1+ x2 <15
2x1+3x2 <135
-3x1+2x <15

b. Solve this problem by the classical theory using Lagrange multipliers, and explain
why Lagrange multipliers are sometimes called "shadow" or "implicit" prices.

3-6. a. Solve the following problem by the Simplex Method using slack and artificial
variables:
Maximize: x1+10x2 = p
Subject to: X1+ x2>5

3x1+ x <15
b. Calculate the inverse of the optimal basis and the Lagrange multipliers.
c. Calculate the largest changes in the right-hand side of the constraint equations (b,'s)

for the optimal solution in part a to remain optimal.

3-7.  Solve the following problem by the Simplex Method using the minimum number of slack,
surplus, and artificial variables needed for an initially feasible basis.

Minimize: 2x1t4x2+ x3=c
Subject to: X1+2x2 - x3<5

2x1- X2+ 2x3 =2
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X1+ 2x2+2x3 >1
3-8. a. Solve the following problem using the Simplex Method using an artificial
variable x¢ in the second constraint equation and adding the term -10°; to the
objective function.
Maximize: 2x1+ x2+x3=p

Subject to: x1+ x2+x3<10

x1+5x+x3>20

b. Compute the effect of changing cost coefficient ¢; from 2 to 3, i.e. Ac1 =1, and ¢3
from 1 to 4, i.e., Acs = 3 using the results of Example 4-6.
C. Without resolving the problem, find the new optimal solution if the first constraint

equation is changed to the following by using the results of Example 4-6:
X1+x2+x3<5

Also, compute the new optimal values of x; and x> and value of the objective
function.

3-9.  Consider the following linear programming problem:

Maximize: 2x1+ x2 = p

Subject to: x1+2x <10

2x1+3x2 <12

3x1+ x <15

x1t x >4
a. Solve the problem by the Simplex Method using slack variables in the first three
equations and an artificial variable in the fourth constraint equation as the initially

feasible basis.

b. The following matrix is the inverse of the optimal basis, A*-!. Multiply this matrix
by the matrix A* to obtain the unit matrix I:

0 —0143 0429 0
0 0429 —028 0
11 —0714 0143 0
0 0286 0143 -1
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c. Compute the Lagrange multipliers for the problem.
d. Compute the changes in the right-hand side of the constraint equations that will
cause all of the values of the variables in the basis to become zero.

3-10.> Consider the following problem based on a blending analysis:
Minimize: 50x1 +25x2 =c¢
Subject to: x1t 3x>8
3x1+ 4x; >19
3xi+ x2>7
Solve this problem by the Simplex Method.
Compute the inverse of the optimal basis and the Lagrange multipliers.
c. Determine the effect on the optimal solution (variables and cost) if the right-hand
side of the second constraint equations is changed from 19 to 21 and the right-hand
side of the third constraint equations is changed from 7 to 8.

d. Show that the following must hold for the optimal solution to remain optimal
considering changes in the cost coefficients.

o

3/4<ci/cr <3

3-11. Consider the following linear programming

problem:
Maximize: X1+9%+ x3=p
Subject to: X1+ 2x+3x3<9
3x1+ 20+ 2x3< 15
a. Solve this problem by the Simplex Method.
b. Compute the inverse of the optimal basis and the Lagrange multipliers.

c. Determine the largest changes in the right-hand side and in the cost coefficients of
the variables in the basis for the optimal solution to remain optimal.

3-12. Solve the following problem by the Simplex Method. To demonstrate your understanding
of the use of slack and artificial variables, use slack variables in the first two constraint
equations and an artificial variable in the third constraint equation as the initially feasible

basis:
Maximize: x1+2x=p
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3-13.

3-14.

3-15.

3-16.

Subject to: X1+ x2<2
x1+ x2<6
x1t x>1

a. Derive Equation 4-31 from Equation 3-30. Explain the significance of the
terms in Equation 3-31, and discuss the application of this equation in sensitivity
analysis associated with coefficients of the variables in the objective function.

b. Starting with Equation 3-25 show that the change, in b which gives the limit on Ab
for x; " new = 0 is equal to -b.

In a power plant that is part of a chemical plant or refinery both electricity and process
steam (high and low pressure) can be produced. A typical power plant has constraints
associated with turbine capacity, steam pressure and amounts, and electrical demand. In
Stoecker (14) the following economic and process model is developed for a simple power
plant producing electricity, high pressure steam x;, and low-pressure steam x;.

Maximize: 0.16x; + 0.14x> = p
Subject to: X1+ x2 < 20
x1+  4x < 60
4x1+ 3x2< 72

Determine the optimal values of x; and x> and the maximum profit using the Simplex
Method.

A company makes two levels of purity of a product that is sold in gallon containers.
Product A is of higher purity than product B with profits of $0.40 per gallon made on A
and $0.30 per gallon made on B. Product A requires twice the processing time of B, and
if all B is produced, the company could make 1,000 gallons per day. However, the raw
material supply is sufficient for only 800 gallons per day of both A and B combined.
Product A requires a container of which only 400 1-gallon containers per day are available
while there are 700 1-gallon containers per day available for B. Assuming the entire
product can be sold of both A and B, what volumes of each should be produced to maximize
the profit? Solve the problem graphically and by the Simplex Method.

A wax concentrating plant, as shown in Figure 3-9, receives feedstock with a low
concentration of wax and refines it into a product with a high concentration of wax. In
Stoecker (14) the selling prices of the products are xi1, $8 per hundred pounds; and xz, $6
per hundred pounds; and the raw material costs are x3, $1.5 per hundred pounds, and x4, $3
per hundred pounds.

The plant operates under the following constraints:

a. The same amount of wax leaves the plant as enters it.
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b. The receiving facilities of the plant are limited to no more than a total of 800 pounds
per hour.

C. The packaging facilities can accommodate a maximum of 600 pounds per hour of
x2 and 500 pounds per hour of x;.

If the operating cost of the plant is constant, use the Simplex Algorithm to determine the

purchase and production plan that result in the maximum profit.

40% wax

90% wax
X3 —> X
Wax Concentrating Plant
Xg ~——> > X
60% wax 80% wax

Figure 3-9 Wax Concentrating Plant for Problem 3-16

3-17. A company produces a product and a byproduct, and production is limited by two
constraints. One is on the availability raw material, and the other is on the capacity of the
processing equipment. The product requires 3.0 units of raw material and 2.0 units of
processing capacity. The byproduct requires 4.0 units of raw materials and 5.0 units of
processing capacity. There is a total of 1,700 units of raw material available and a total of

1600 units of processing capacity. The profit is $2.00 per unit for the product and $4.00
per unit for the by-product.
The economic model and constraints are:

Maximize: 2x1 + 4x
Subject to: 3x1 +4x; <1700 raw material constraint
2x1+ 5x2 < 1600 processing capacity constraint

a. Determine the maximum profit and the production of the product x; and byproduct x>
using the Simplex Method.
b. Calculate the inverse of the optimal basis and the Lagrange multipliers.
c. 1. If the total raw material available is increased from 1700 to 1701, determine the new
product, byproduct and profit.
i1. If an additional 10 units of processing capacity can be obtained at a cost of
$7, i.e. 1600 is increased to 1610, is this additional capacity worth obtaining?
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d. A second by-product can be produced which requires 4.0 units of raw material and 3
1/3 units of processing capacity. Determine the profit that would have to be made on
this by-product to consider its production.

3-18.'* A chemical plant, whose flow diagram is shown in Figure 3-10, manufactures ammonia,
hydrochloric acid, urea, ammonium carbonate, and ammonium chloride from carbon
dioxide, nitrogen, hydrogen, and chlorine. The x values in Figure 3-10 indicate flow rates
in moles per hour.

The costs of the feed stocks are c1, ¢2, ¢3 and c4; the values of the products are ps, ps, p7 and
ps in dollars per mole where the subscript corresponds to that of the x value. In reactor 3
the ratios of molar flow rates are m = 3x7 and x| = 2x7 and, in other reactors, straightforward
material balances apply. The capacity of reactor 1 is equal to or less than 2,000 mol/hr of
NH3 and the capacity of reactor 2 is equal to or less than 1,500 mol/hr of HCI as given by

Stoecker (14).
a. Develop the expression for the profit.
b. Write the constraint equations for this plant.
o,
Xy
Nz
Xo NH Reactor 3 ___»Urec and 7
Reactor | 3 m ‘é{,“,’"’t',‘(’,?,'o“,'g‘
H
)(3 2
N Reactor 4 ~ NH4CI X
HCI > s
Reactor 2
cl
Xq 2
Xg X6
NHz  HCI
Figure 3.10 Flow Diagram of a Chemical Plant in Problem 4-18 (after Stoecker (14))
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3-19.%8 The flow diagram of a simple petroleum refinery is shown in Figure 3-11. The prices and
quality specifications of the products and their minimum production rates are given below:

Product Quality Minimum Production (bbl/day) Prices($/bbl)
Premium Gasoline  >91 Mon 25,000 $45.00
Regular Gasoline > 89 Mon 10,000 43.50

Fuel Oil < 55 Cont. No. 30,000 13.00

The current cost of crude is $32.00/barrel. Operating cost for separation in the crude still is $0.25
per barrel. for each product produced. The operating cost for the catalytic cracking unit is $0.10
for the straight run distillate and $0.15 for the straight run fuel oil.

The following table gives the specifications for each blending component:

Component MON Cont. No
Hv. Cat. Cycle Oil - 59

Lt. Cat. Cycle Oil 88 50
Cat. Naphtha 97 -
Straight Run Distillate 84 -
Straight Run Gasoline 92 -

The capacity of the catalytic cracking unit must not exceed 50,000 barrels/day and the crude still
1s limited to 100,000 barrels/day. The crude is separated into three volume fractions in the crude
still, 0.2 straight run gasoline, 0.5 straight run distillate, and 0.3 straight run fuel oil. In the catalytic
cracking unit, a product distribution of 0.7 barrel of cat. naphtha, 0.4 light cat. cycle oil and 0.2
barrel of heavy cat. cycle oil is obtained per barrel of straight run distillate. The straight run fuel
oil product distribution is 0.1 barrel of cat. naphtha, 0.3 barrel of light cat. cycle oil and 0.7 barrel
of heavy cat. cycle oil.

Present a matrix representation of this simple refinery similar to the one shown in Figure 4-8. Be
sure to include the objective function and material balance, unit, and blending constraints.

3-20. For the results of the MPSX optimization of the simple refinery consider the following:

a. In Table 3-12(b), it shows that the variable SRNPG is not in the basis. Compute the largest
change in the cost coefficient of SRNPG for the optimal solution to remain optimal. Confirm that
this is the correct answer by the sensitivity analysis results tabulated in the chapter.

b. In Table 3-12(b) the fuel oil (FO) flow rate is at the optimal value of 10,000 bbl/day. Compute
the change in the profit if the fuel oil flow rate is increased to 11,000 bbl/day using Lagrange
multipliers. Would this change cause the problem to be resolved according to the MPSX results,
why?

c. The marketing department of the company requires a minimum of 5,000 bbl/day of residual
fuel, a new product. Residual fuel (RF) is straight run fuel oil (SRFO) directly from the
atmospheric distillation column. The price is $10.00 /bbl, and it is sold "as is". Give the
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modifications required to the matrix in Figure 3-8 to determine the optimum way to operate the
refinery with this new product.

N A Premium Gas

Volume (PGVOL)

Straight Run Gasoline SRGPG .| Premium Octane Specification
(SRG) ~| Gasoline (PGOS)
CNPG S————
Straight Run Distillate
crude BRES) g SRDRG SRGPG_ | 7 ¥
(CRUDE) SRDCC Cat. Naptha v Regular Gas Volume
> (CNAP) CNRG (RGVOL) Octane
) o Catalytic |Lit. Cat. Cycle Oil gegu:fif Specification (RGOS)
Straight Run Fuel Oil i »| Gasoline
e RO g [T Tocons
Unit Hv. Cat.
Cycle Oil _

(HvCCO) 4 N
LCOFO \/ Fuel Oil Volume

> (FovoL)
Fuel Oil Contamination
Specification (FOCS)

N—

Figure 3-11 Flow Diagram of a Simple Refinery (8) in Problem 4-19

3-21. Prepare a matrix of the objective function and constraint equations from the process flow
diagram for the contact process for sulfuric acid like the one given in Figure 3-8 for the
simple refinery. The process flow diagram for the contact process is given in Figure 9-
21. Use the following data, and assume that the units not included below have a fixed
operating cost that do not affect the optimization.

Sales Prices and Raw Material Cost (3/Ib)
Steam from Boiler 1 (STB1) 0.012
Steam from Boiler 2 (STB2) 0.012
Sulfuric Acid (H2S04) 0.050
Sulfur to Burner (SULFUR) 0.025
Water to Economizer (WATER) 0.006
Make-up Water MWATER) 0.006
Operating Costs (3/1b)
Steam from Boiler 1 (STB1) 0.001
Steam from Boiler 2 (STB2) 0.001
Air through Dryer (DRYAIR) 0.005
Water to Economizer (WATER) 0.001
Acid through acid cooler (H2S0O4) 0.001
Acid through absorber (H2SO4) 0.001
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Product Requirements and Raw Material Availability (Ib/hr)

Sulfuric Acid (H2SO4) 30,000

Steam (STB1 + STB2) 40,000

Sulfur (SULFUR) 10,000
Process Unit Maximum Capacities (Ib/hr)

Waste Heat Boiler 1(STB1) 25,000

Waste Heat Boiler 2(STB2) 25,000

Acid Cooler (H2S0O4) 35,000

Dryer (DRYAIR) 150,000

Economizer (WATER) 60,000

Absorber (H2S04) 35,000
Stream Split

Sulfuric Acid Production =3.06 SULFUR

Dry air =0.155 SULFUR

Make-up Water =0.128 SULFUR

Steam from Boilers 1 and 2 = WATER

3-22."7 In linear programming there is a dual problem that is obtained from the original or primal

problem. Many times, the dual problem can be solved with less difficulty than the primal

one. The primal problem and corresponding dual problem are stated below in a general
form.

Primal Problem Dual Problem

Maximize:  ¢/x Minimize: b’v

Subjectto: A x<b Subjectto:  ATv>e¢
x>0 v>0

The relationships between the primal and dual problems are summarized as follows. First,
the dual of the dual is the primal problem. An m x n primal gives a n x m dual. For each
primal constraint there is a dual variable and vice versa. For each primal variable there is
a dual constraint and vice versa. The numerical value of the maximum of the primal is
equal to the numerical value of the minimum of the dual. The solution of the dual problem
is the Lagrange multipliers of the primal problem.

a. Give the primal problem of the following dual problem.
Minimize: 10vi + 15w
Subject to: vi+ 5v; >8

vit w >4
b. Solve the dual problem by the Simplex Method.
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3-23.

3-24.

C. Using the solution of the dual problem, determine the optimal values for the
variables in the primal problem.

The dual problem of linear programming can be obtained from the primal problem using

Lagrange multipliers. Using the form of the equations given in Problem 4-22 for the

primal problem and considering the slack variables have been added to the constraints,

show that the Lagrange function can be written as:

Lx,)=c¢"x+AT(Ax-b)
Rearrange this equation to give the following form.
L(x,,) =-bT L+ x"(AT L+ ¢)

Justify that the following constrained optimization problem can be obtained from the
Lagrange function:

Minimize: b’ A
Subject to: ATA>c¢

This is the dual problem given in Problem 3-22. Note that the independent variables of the
dual problem are the Lagrange multipliers or "shadow prices" of the primal problem.

A primal programming can be converted into a dual problem as described in Problems 4-
22 and 4-23. This approach is used when the dual problem is easier to solve than the primal
problem. The general form of the primal problem and its dual was given in Problem 4-22.

a. Solve the dual problem of the primal problem and its dual given below.

Primal problem:

Minimize: 10x7 + 6x2 + 8x3

Subject to: x1t+ x2+2x3>2
Sx1+3x2+2x3> 1

Dual problem:
Maximize: 2vit w»m
Subject to: vi+5m <10
vi+31m<6
2vi +2vy <8

b. In this procedure the solution of the primal problem is the negative of the
coefficients of the slack variables in the objective function of the final iteration of
the Simplex Method of the dual problem, and the solution of the dual problem is
the negative of the Lagrange multipliers for the primal problem. Give the solution
of the primal problem and the Lagrange multipliers for the primal problem and
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show that the minimum of the objective function of the primal problem is equal to
the maximum of the objective function of the dual problem.

c. In the primal problem give the matrix to be inverted to compute the inverse of the
optimal basis.
d. Compute the Lagrange multipliers using Equation 4-22 and show that they agree
with the solution from the dual problem.
e. A new variable xs is added to the problem, as shown below.
Minimize: 10x1 + 6x2 + 8x3 + 2x6= p
Subject to: x1+ x2+2x3+x4+ Sx¢ = 2
Sx1+ 3x2 + 2x3 +x5+3x¢ = 1

Will the optimal solution remain optimal or will the problem have to be resolved?
Explain.

3-25. Solve Example 3-5 by the Two-Phase Method. In this method, the objective function is
replaced by the sum of the artificial variables as a “new” objective function to be minimized. Then
the Simplex Method is performed. The artificial variables will not be in the optimal solution since
the minimum will have them be zero. First, the artificial variables are eliminated in the objective
function to have the proper format to apply the Simplex Method with the artificial variables being
the initially feasible basis. With each application of the Simplex Method an artificial variable is
replaced in the basis by another variable, and the minimum is reached when all of the artificial
variables have left the basis and are zero. At this point, the “new” objective function is replaced
with the original objective function and the artificial variables are discarded. The Simplex Method
is applied with the feasible basis obtained from the last step with the “new” objective function, and
the algorithm is applied to reach the optimum.
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