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Chapter 3 
 

LINEAR PROGRAMMING 
 
Introduction 
           
 Linear programming is the most widely applied of all of the optimization methods.  The 
technique has been used for optimizing many diverse applications, including refineries and 
chemical plants, livestock feed blending, routing of aircraft, and scheduling their crews.  Many 
industrial allocation and transportation problems can be optimized with this method.  The 
application of linear programming has been successful, particularly in cases of selecting the best 
set of values of the variables when a large number of interrelated choices exist.  Often such 
problems involve a small improvement per unit of material flow time’s large production rates to 
have as the net result be a significant increase in the profit of the plant.  A typical example is a 
large oil refinery where the stream flow rates are very large, and a small improvement per unit of 
product is multiplied by a very large number to obtain a significant increase in profit for the 
refinery.  
 
 The term programming of linear programming does not refer to computer programming 
but to scheduling.  Linear programming was developed about 1947, before the advent of the 
computer, when George B. Dantzig (1) recognized a generalization in the mathematics of 
scheduling and planning problems.  Developments in linear programming have followed advances 
in digital computing, and now problems involving several thousand independent variables and 
constraints equations can be solved.  
 
 In this chapter a geometric representation and solution of a simple linear programming 
problem will be given initially to introduce the subject and illustrate the way to capitalize on the 
mathematical structure of the problem.  This will be followed by a presentation of the simplex 
algorithm for the solution of linear programming problems.  Having established the computational 
algorithm, we will give the procedure to convert a process flow diagram into a linear programming 
problem, using a simple petroleum refinery as an illustration.  The method of solution, using large 
linear programming computer codes, then will be described, and the solution of the refinery 
problem using the IBM Mathematical Programming System Extended (MPSX), will illustrate the 
procedure and give typical results obtained from these large codes.  Once the optimal solution has 
been obtained, sensitivity analysis procedures will be detailed which use the optimal solution to 
determine ranges on the important parameters where the optimal solution remains optimal.  Thus, 
another linear programming solution is not required.  This will be illustrated also using results of 
the refinery problem obtained from the MPSX solution. Finally, a summary will be given of 
extensions to linear programming and other related topics.  
 
Concepts and Geometric Interpretation 
 
 As the name indicates, all of the equations that are used in linear programming must be 
linear.  Although this appears to be a severe restriction, there are many problems that can be cast 
in this context.  In a linear programming formulation, the equation that determines the profit or 
cost of operation is referred to as the objective function.  It must have the form of the sum of linear 
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terms.  The equations that describe the limitations under which the system must operate are called 
the constraints.  The variables must be nonnegative, i.e., positive or zero only.  
 
 The best way to introduce the subject is with an example.  This will give some geometric 
intuition about the mathematical structure of the problem and the way this structure can be used to 
find an optimal solution.  
 
Example 3.1 
     
 A chemical company makes two types of small solid fuel rocket motors for testing; for 
motor A the profit is $3.00 per motor and for motor B the profit is $4.00 per motor.  A total 
processing time of 80 hours per week is available to produce both motors.  An average of four 
hours per motor is required for A, but only two hours per motor is required for B.  However, due 
to hazardous nature of the material in B, a preparation time of five hours is required per motor, 
and a preparation time of two hours per motor is required for A.  The total preparation time of 120 
hours per week is available to produce both motors.  Determine the number of each motor that 
should be produced to maximize the profit.  
 
Solution: The objective function and constraint equations for this case are:  
  
maximize: 3A + 4B            Profit 
 
subject to: 4A + 2B < 80   Processing Time 
    
  2A + 5B < 12    Preparation Time 
    
  A, B >  0 
 
It would be tempting to make all B motors using the preparation time limitation 120/5 = 24 for a 
profit of $96.  If all A motors were made, there is a processing time limitation 80/4 = 20 for a profit 
of $60.  However, there is a best solution, and this can be seen from Figure 3-1.  The small arrows 
show the region enclosed by the constraint equations that is feasible for the variables.  For the 
processing time and preparation time, any values of the variables lying above the lines violate the 
constraint equations.  Consequently, feasible values must lie on or inside the lines, and the A and 
B axes (since A and B must be nonnegative).  This is called the feasible region.  The objective 
function is shown in Figure 3.1 for P = 96, and this is the one of the family of lines:  
   
  3A + 4B = P  

or    
  A = - (4/3) B + P/3  

 
 
where P can increase as long as the values of the variables A and B stay in the feasible region.  By 
increasing P, the profit equation shown above moves up with a constant slope of - 4/3, and P 
reaches the maximum value in the feasible region at the vertex A = 10, B = 20, where P = $110. 
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 Another geometric representation of the profit function and constraints is shown in Figure 
3.2.  The profit function is a plane and the highest point is the vertex A = 10, B = 20.  The 
intersection of the profit function and planes of P = constant give a line on the profit function plane 
as shown for P = 96.  The projection of this line on the response surface (the A - B plane) is the 
same line shown in Figure 3.1 for P = 96.  This diagram emphasizes the fact that the profit function 
is a plane, and the maximum profit will be at the highest point on the plane and located on the 
boundary at the intersection of constraint equations, a vertex. 
     

Figure 3-1 Constraints and Objective Function for Maximizing Rocket Motor Profit
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Figure 3-2 Geometric Representation of Constraints and 
Objective Function for Maximizing Rocket Motor Profit
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 This example can be used to illustrate infeasibility also, i.e., no feasible solution to linear 
programming problems.  For example, if there were constraints on A and B such that A > 21 and 
B > 25, then there would be no solution since the processing and preparation time constraints could 
not be satisfied.  Although it is obvious here that A and B could not have these values, it is not 
unusual in large problems to make a mistake and have the linear programming code return the 
result INFEASIBLE SOLUTION - the constraints are inconsistent.  Almost always a blunder has 
been made, and the constraints do not represent the process.  However, in large problems the 
blunder may not be obvious, and some effort may be required to find the error.   
 
General Statement of the Linear Programming Problem 
 
 There are several ways to write the general mathematical statement of the linear 
programming problem.  First, in the usual algebraic notation: 
 
Objective Function: 
 
   optimize:     c1x1 +  c2x2 + ... + cnxn (3-1a) 
 
Constraint Equations:  
 
 subject to:  a11  x1 + a12 x2 + ... + a1 n x n > b1 
  (4-1b) 
      

a21 x 1 + a22 x 2 + ... + a2 n x n > b2 
            (3-1b) 
       .   . . 
         .   . . 
       .   . . 
      
     a m1 x1 + a m2 x2 + ... + a m n x n > bm 
      
     xj > 0        for j = 1,2, ... n  (3-1c)
    (4-1c) 
 
We seek the values of the xj's that optimize (maximize or minimize) the objective function, 
Equation (3-1a). The coefficients, cj's, of the xj's are referred to as cost coefficients.  These can be 
positive and negative depending on the problem.  Also, the values of the xj's must satisfy the 
constraint equations, Equation (3-1b), and be nonnegative, Equation (3-1c).  
 
 There are more unknowns than constraint equations after the inequalities have been 
converted to equalities using slack variables.  There will be m positive xj's that optimize the 
objective function and the remaining (n - m) xj's will be zero.  In a chemical or refinery process, 
the independent variables can be flow rates, for example; and the constraint equations can be 
material and energy balances, availability of raw materials, limits on process unit capacities, 
demands for products, etc.  
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 The general formulation can also be written as: 
 
      n 
   optimize:  Σ  cjxj    (3-2a)
  (4-2a) 
     j =1 
 

   n 
  subject to:  Σ  ai j xj > bi    for i = 1,2, ... m  (3-2b)
   (4-2b) 

  j =1 
     
      xj > 0      for  j = 1,2, ... n (3-2c)
   (4-2c) 
 
Matrix notation is another convenient method of writing the above equations. 
  
   optimize: cT x     (3-3a) 
      
   subject to: A x > b   (3-3b) 
        
     x > 0    (3-3c) 
where  
      cT = [ c1 ,c2,...cn ] 
      

xT = [ x1, x2,...xn ] 
and 
 

where      

 
 
The constraint equations given above have been written as inequalities. However, linear 

programming requires the constraints be equalities.  In the next section, the use of slack and surplus 
variables is described to convert the inequalities to equalities.  
 
Slack and Surplus Variables 
 
 In Example 3-1 the constraint equations were inequalities and the graphical method of 
locating the optimum was not affected by the constraints being inequalities.  However, the 
computational method to determine the optimum, the Simplex Method, requires equality 
constraints.  As was done in Chapter 2, the inequalities are converted to equalities by introducing 
slack and surplus variables.  This is illustrated by converting the inequality, Equation 3-4, to an 
equality, Equation 3-5.  
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    x1 + x2 < b   (3-4) 
 
 
Here a positive x3 is being added to the left-hand side of Equation 3-4, and x3 is the slack variable: 
     
    x1 + x2 + x3 = b (3-5) 
 
If the inequality had been of greater than or equal to type, then a surplus variable would have been 
subtracted from the left-hand side of the equation to convert it to an equality.  
  
 In linear programming it is not necessary to use x32, as in Chapter 2, since the computational 
method to find the optimum, the Simplex Method, does not allow variables to take on negative 
values.  If the slack variable is zero, as it is in some cases, the largest value of the sum of the other 
variables (x1 + x2) is optimum, and the constraint is tight or active.  If the slack variable is positive, 
then this would represent a difference or slack between the optimum values of (x1 + x2) and the 
total value that (x1 + x2) could have. In this case the constraint is loose or passive.  
 
Basic and Basic Feasible Solutions of the Constraint Equations 
  

Now let us focus on the constraint equation set alone, written as equalities (i.e., slack and 
surplus variables have been added), and discuss the possible solutions that can be obtained.  This 
set can be written as:  

     
    A x = b  (3-6) 
 
There are m equations and n unknowns where n > m (for convenience using n again which now 
would include the slack and surplus variables, also).  
 
 A number of solutions can be generated for this set of linear algebraic equations by 
selecting (n - m) of the xj's to be equal to zero.  In fact, this number can be computed using the 
following formula (9).  

 

Maximum number of basic solutions =        (3-7) 

              
 
Thus, a basic solution of the constraint equations is a solution obtained by setting (n - m) variables 
equal to zero and solving the constraint set for the remaining m variables.  From this set of basic 
solutions, a group of solutions are selected where the values of the variables are all nonnegative, 
basic feasible solutions.  The number of solutions can be estimated by the following formula (18).   
  
 Approximate number of basic feasible solutions = 2m       (3-8) 
 
Thus, a nondegenerate basic feasible solution is a basic solution where all of the m variables are 
positive.  A solution of m variables that are all positive is called a basis in the linear programming 
jargon.  

)!(!
!
mnm

n
-



 61 

  
Let us focus on the objective function, Equation 3-1a, now that we have a set of basic 

feasible solutions from the constraint equations.  It turns out that one of the basic feasible solutions 
is the minimum of the objective function, and another one of these basic feasible solutions is the 
maximum of the objective function.  The Simplex Algorithm begins at a basic feasible solution 
and moves to the maximum (or minimum) of the objective function stepping from one basic 
feasible solution to another with ever increasing (or decreasing) values of the objective function 
until the maximum (or minimum) is reached.  The optimum is found in a finite number of steps, 
usually between m and 2m (7).  
  

We will need to know how to obtain the first basic feasible solution and how to apply the 
Simplex Algorithm.  Also, it will be seen that when the maximum (or minimum) is reached the 
algorithm has an automatic stopping procedure.  Having briefly described the Simplex Method, let 
us give the procedure, illustrate its use with an example, and present some of the mathematical 
basis for the methodology in the next section.  
 
Optimization with the Simplex Method 
 
 The Simplex Method is an algorithm that steps from one basic feasible solution 
(intersection of the constraint equations or vertex) to another basic feasible solution in a manner 
to have the objective function always increase or decrease.  Without attempting to show a model 
associated with the following linear programming problem (2), let us see how the algorithm 
operates.  
 
Example 3-2 
 
For the following linear programming problem, convert then constraint equations to equality 
constraints using slack variables: 
   

maximize:    x1 + 2x2  
   
    subject to:   2x1 +   x2  < 10  
     

   x1 +   x2  < 6  
     

  -x1 +   x2  < 2  
     

-2x1 +   x2  < 1  
        

   x1 ,  x2  > 0  
  
When the slack variables are inserted, the constraint equations are converted to equalities, as shown 
below.   
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   Maximize:    x1 + 2x2   = p 
   
   Subject to:  2x1 +   x2 + x3   = 10 
        
        x1 +   x2         + x4   = 6 
       
       -x1 +   x2              + x5  = 2 
     

-2x1 +   x2                        + x6 = 1 
     
       xj > 0,      j = 1, 2, ..., 6.  
 
where p represents the value of the objective function.  
  

There are six variables in the set of four constraint equations in Example 3-2.  To generate 
basic solutions, two of the variables are set equal to zero, and the equations are solved for the 
remaining four variables for the solution.  This has been done (2), and all of the basic feasible 
solutions were selected from the basic solutions and listed in Table 3-1.  These correspond to the 
vertices of the convex polygon A-B-C-D-E-F as shown in Figure 3-3.  Also shown in Table 3-1 
are the values of the objective function evaluated for each basic feasible solution.  As can be seen, 
the maximum of the objective function is at the basic feasible solution, x1 = 2, x2 = 4 (Vertex D); 
and the minimum is at the basic feasible solution, x1 = 0, x2 = 0 (Vertex A). 

 
  Table 3-1.  Basic Feasible Solutions of the Constraint Equations in Example 3-2 
 
        Vertex x1 x2 x3 x4 x5 x6  p   
   A 0 0 10 6 2  1  0  
   B 0 1  9 5 1  0  2 
   C 1 3  5 2 0  0  7 
   D 2 4  2 0 0  1 10 
   E 4 2  0 0 4  7  8 
   F 5 0  0 1 7 11  5 
 
 
 The number of basic solutions is given by Equation 3-7 (5).  For n = 6 and m = 4 the number 
of basic solutions is 15.  One of the basic solutions of the constraint equations is obtained by setting 
x1 = x4 = 0, and the result is:  
 

x1 = 0,        x2 = 6,       x3 = 4,       x4 = 0,       x5 = - 4     and     x6 = -5 
 
Here two of the four values of the variables are negative. The approximate number of basic feasible 
solutions given by Equation (3-6) is eight, which is close to the actual number of six. 
 
 Referring to Table 3-1 and Figure 3-3 and comparing the variables in a basis with those in 
an adjacent basis, it is seen that each have all but one nonzero variable in common.  For example, 
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to obtain basis B from basis A it is necessary to remove x6 from the basis (i.e., set x6 = zero) and 
bring x2 into the basis (i.e., solve for x2 ≠ 0).  The Simplex Method does this and moves  

 
 
 
from one basic feasible solution to another.  Each time it moves in a direction of an improved value 
of the objective function.  This is the key to the Simplex Algorithm.  To move in this fashion only 
requires the use of Gaussian elimination applied to the constraints and then to the objective 
function to determine its new improved value. 
 

The procedure to solve a linear programming problem using the Simplex Algorithm to 
maximize the objective function is:  

 
1.  Place the problem in a linear programming format with linear constraint equations and linear 
objective function.    
 

Figure 3-3 Geometric Representation of the Constraints in Example 4-2
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2.  Introduce slack and surplus variables to convert inequalities to equalities and adjust the 
constraint equations to have positive right-hand sides. 
 
3.  Select an initial basic feasible solution.  If all of the constraint equations were inequalities of 
the less than or equal to form, the slack variables can be used as the initially feasible basis.  
 
4.  Perform algebraic manipulations to express the objective function in terms of variables that are 
not in the basis, i.e., are equal to zero.  This determines the value of the objective function for the 
variables in the basis. 
 
5.  Inspect the objective function and select the variable with the largest positive coefficient to 
bring into the basis, i.e., make nonzero.  If there are no positive coefficients, the maximum has 
been reached (automatic stopping feature of the algorithm).  
 
6.  Inspect the constraint equations to select the one to be used for algebraic manipulations to 
change the variable in the basis.  The selection is made to have positive right-hand sides from the 
Gaussian elimination.  This is necessary to guarantee that all of the variables in the new basis will 
be positive.  Use this equation to eliminate the variable selected in step 5 from all of the other 
constraint equations. 
 
7.  Use the constraint equation selected in step 6 to eliminate the variable selected in step 5 from 
the objective function. This moves one of the variables previously in the basis to the objective 
function, and it is dropped from the basis, i.e. set equal to zero. Also, this determines the new value 
of the objective function.  
 
8.  Repeat the procedure of steps 5 through 7 until all coefficients in the objective function are 
negative and stop.  If the procedure is continued past this point, then the value of the objective 
function would decrease.  This is the automatic stopping feature of the algorithm. 
  
 The Simplex Algorithm will be applied to Example 3-2 to illustrate the computational 
procedure.  The first two steps have been completed, and the slack variables will be used as the 
initial feasible basis (Step 3). 
 
Example 3-3 
 
Apply the Simplex Method to the linear programming problem of Example 3-2 using the slack 
variables as the first basic feasible solution. 
 
 maximize: x1 + 2x2     = p  p = 0 
  
 subject to:       2x1 +  x2 + x3    = 10 x3 = 10 
 
     x1 +  x2  + x4   = 6 x4 = 6 
 
   - x1 +  x2  + x5  = 2 x5 = 2 
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   - 2x1 + x2         + x6 = 1 x6 = 1 
 
        x1 = 0 
        x2 = 0 
Continuing with the procedure, x2 is the variable in the objective function with the largest positive 
coefficient. Thus, increasing x2 will increase the objective function (step 5).  
 
The fourth constraint equation will be used to eliminate x2 from the objective function (step 6). 
The variable x2 is said to enter the basis, and x6 is to leave. 
 
Proceeding with the Gaussian elimination gives: 
 
 maximize:  5x1          -2x6 = p -2  p = 2 
 
 subject to: 4x1     + x3          - x6 = 9  x3 = 9 
 
   3x1  + x4         - x6 = 5  x4 = 5 
 
    x1   + x5 – x6 = 1  x5 = 1 
 
   -2x1 + x2          + x6 = 1  x2 = 1 
 
         x1 = 0 
 
         x6 = 0 
 
The nonzero variables in the basis are x2, x3, x4, and x5; and the objective function has increased 
from p = 0 to p = 2.  
 
The procedure is repeated (Step 8) selecting x1 to enter the basis.  The third constraint equation is 
used, and x5 leaves the basis. Performing the manipulations gives:  

 
maximize:                         -  5x5  + 3x6   =  p - 7    p = 7 
 
subject to:                x3     -  4x5  + 3x6   =   5     x3 = 5 

 
             x4  - 3x5  + 2x6    =   2    x4 = 2 
 
x1              +   x5   -   x6    =   1    x1 = 1 
 
     x2         +  2x5 -   x6     =   3   x2 = 3 

 
x5 = 0  
 
x6 = 0 
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The procedure is repeated, and x6 is selected to enter the basis.  The second constraint equation is 
used, and x4 leaves the basis.  The results of the manipulations are: 
 
 maximize:           - 3/2 x4  -  1/2 x5  = p - 10  p = 10 
       
 subject to:       x3 - 3/2 x4  + 1/2 x5  = 2  x3 = 2 
   
               1/2 x4  - 3/2 x5   + x6 = 1  x6 = 1 
   
   x1         + 1/2 x4   + 1/2 x5 = 2  x1 = 2 
  
       x2   + 1/2 x4+ 1/2 x5  = 4  x2 = 4 

 
x4 = 0 
 
x5 = 0 

  
All of the coefficients in the objective function are negative for the variables that are not in the 
basis.  If x4 or x5 were increased from zero to a positive value, the objective function would 
decrease.  Thus, the maximum is reached, and the optimal basic feasible solution has been 
obtained.  
 
 Referring to Table 3-1 and Figure 3-3 for the set of basic feasible solutions, it is seen that 
the Simplex Method started at vertex A.  The first application of the procedure stepped to the 
adjacent vertex B, with an increase in the objective function to 2.  Proceeding, the Simplex Method 
then moved to vertex C, where the objective function increased to 7.  At the next application of 
the algorithm, the optimum was reached at vertex D with p = 10.  At this point the application of 
the Simplex Method stopped since the maximum had been reached. 

 
 Let us use this example to demonstrate that the Simplex Method can be used to find the 
minimum of an objective function by only slightly modifying the logic of the algorithm for 
maximizing the objective function.  If we begin by minimizing the objective function given in the 
last step of Example 3-3, the largest decrease in the objective function is made by selecting x4 to 
enter the basis (Step 5), i.e., selecting the variable which is not in the basis and whose coefficient 
is the largest in absolute value and negative.  Then select the second constraint equation for the 
manipulations to have positive right-hand sides of the constraints.  This has x4 entering the basis, 
and x6 leaving the basis.  The results are the same as in the next to last step of the example.  
Proceeding, x5 is selected to enter the basis, the third constraint equation is used for the 
manipulations, and x1 leaves the basis.  The results are the same as the second step of the example.  
Continuing, x6 is selected to enter the basis, the fourth constraint equation is used for the 
manipulations, and x2 leaves the basis.  The results are the same as the first step in the example, 
and all of the coefficients of the variables in the objective function are positive for the variables 
not in the basis.  The minimum has been reached, because if either x1 or x2 were brought into the 
basis, i.e., made positive, the objective function would increase.  
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 Thus, the Simplex Algorithm applies for either maximizing or minimizing the objective 
function.  The logic of the algorithm is essentially the same in both cases, and it only differs in the 
selection of the variable to enter the basis, i.e., largest positive coefficient for maximizing or the 
largest in absolute value and negative for minimizing.  
 
 With this example we have illustrated the computational procedure of the Simplex 
Algorithm.  Also, we have seen that a solution of the constraints gives the maximum of the 
objective function, and another solution gives the minimum of the objective function.  These 
results can be proven mathematically to be true for the linear programming problem stated as 
Equation 3-1, and the details are given in texts devoted to linear programming.  In the following 
section we will give a standard tabular method for the Simplex Method, and then the key theorems 
of linear programming will be presented along with a list of references where more details can be 
found on mathematical aspects of linear programming.  
 
Simplex Tableau 
 

In using the Simplex Method, it is not necessary to write the xj symbols when doing the 
Gaussian elimination procedure, and a standard method for hand computations has been developed 
which uses only the coefficients of the objective function and constraints in a series of tables.  This 
is called the Simplex Tableau, and this procedure will be illustrated using the problem given in 
Example 3-3. 

 
 The Simplex Tableau for the three applications of the Simplex Algorithm of Example 3-3 
is shown in Figure 3-4.  In this table, dots have been used in places that have to be zero, as opposed 
to just turning out to be zero.  Also, the objective function has been set equal to -y, because the 
tableau procedure minimizes the objective function and is called z, i.e., z = -y = -x1 - 2x2.  Then the 
objective function is included in the last row of the tableau as -z - x1 - 2x2 = 0 to have the same 
form as the constraint equations.  Iteration 0 in Table 3-4 is the initial tableau.  
 
 The slack variables are the initially feasible basis in this example, and the Simplex 
Algorithm first locates the smallest coefficient in the objective function of the variables not in the 
basis.  In this case it is x2 as shown in Figure 3-4 with a coefficient of -2; x2 will enter the basis, 
i.e., becomes positive.  A pivotal element is located to insure the next basis is feasible using a 
minimum ratio test, i.e., selecting the smallest value of (10/1, 6/1, 2/1, 1/1), and the pivotal element 
is indicated as an asterisk identifying the pivotal row used for the Gaussian elimination to move to 
iteration 1, with x6 leaving the basis. 
 
 The above procedure is repeated for two more iterations, as shown in Figure 3-4.  The 
pivotal elements are indicated by an asterisk, having been located by the minimum ratio test.  The 
procedure ends when the values in the objective function row are all positive, for this is a 
minimizing problem.  Also, a comparison of the results in Figure 3-4 with those in Example 3-3 
shows the concise nature of the Simplex Tableau.  In addition, if a pivotal element cannot be 
located using the minimum ratio test, this means that the problem has an unbounded solution, or a 
blunder has been made. 
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 The Simplex Tableau procedure can be used effectively for hand calculations when 
artificial variables are employed to start the solution with an initially feasible basis and to identify 
problems such as degeneracy.  The topics of degeneracy and artificial variables will follow the 
discussion of the mathematics of linear programming. 
 

Figure 3-4 Illustration of the Simplex Tableau
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Mathematics of Linear Programming 
  

The mathematics of convex sets and linear inequalities has to be developed to prove the 
theorems that establish the previous procedure for locating the optimal solution of the linear 
programming problem.  This theory is done in many of the standard texts devoted to the subject 
and is beyond the scope of this brief discussion.  However, the appropriate theorems will be given 
with an explanation, to convey these concepts.  Those who are interested in further details are 
referred to standard works such as Garvin (3) or Gass (7).  

 
A feasible solution, is any solution to the constraint equations, Equation 3-1 and also, is a 

convex set.  A convex set is illustrated in Figure 3-5a, for two dimensions and is a collection of 
points such that if it contains any two points A and B, is also contains the straight-line AB between 
the points.  An example of a nonconvex set is shown in Figure 3-5b.  Also, an extreme point or 
vertex of a convex set is a point that does not lie on any segment joining two other points in the 
set.   
 

 
 

Figure 3-5 Convex and Nonconvex Sets
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 The important theorem relating convex sets with feasible and basic feasible solutions is: 
 
  The collection of feasible solutions constitutes a convex set whose extreme points 
 correspond to basic feasible solutions. (4) 
 
 In the proof of the above theorem it is shown that a linear combination of any two feasible 
solutions is a feasible solution and hence lies on a straight line between the two.  Thus, this 
constitutes a convex set.  To prove that a basic feasible solution is an extreme point, it is assumed 
that a basic feasible solution can be expressed as a linear combination of feasible solutions.  Then 
it is shown by contradiction that this is impossible.  Thus, it must be an extreme point. 
 
 The next important theorem is an existence theorem: 
 
 If a feasible solution exists, then a basic feasible solution exists. (5) 
 
 This theorem is proved by showing that a basic feasible solution can be constructed from 
a feasible solution. 
 
 The next theorem relates the maximum or minimum of the objective function to the basic 
feasible solutions of the constraint equations.  

 
 If the objective function possesses a finite minimum, then at least one optimal solution is 
 a basic feasible solution. (6) 
 
 This theorem can be proved by writing a solution to the constraint equations as the 
weighted sum of a feasible solution and a basic solution where a range on the weights determines 
that this solution of the constraint equations is a feasible solution.  The objective function can then 
be put in the form of the weights, and limits on the weights are determined that has the feasible 
solution be a basic feasible solution.  Next, it can be shown that it is always possible to generate a 
new feasible solution which contains at least one more variable at zero than the current one, and 
the new value of the objective function will be less than or equal to the current value.  Continuing 
to generate new feasible solutions by the procedure has the feasible solutions become a basic 
feasible solution, if the objective function is not equal to minus infinity.  The procedure holds for 
any feasible solution, and then it holds for an optimal solution.  Thus, the optimal solution is a 
basic feasible solution.  Details of this proof are given in Garvin (6). 
  
 This theorem provides the basis for locating optimal solutions of the linear programming 
problem.  Only basic feasible solutions need to be examined to determine the maximum and 
minimum for the problem, and there are a finite number of basic feasible solutions.  In contrast 
there are an infinite number of feasible solutions. 
  
 To formalize the simplex computational procedure, consider the set of equations with a 
basic feasible solution x = (x4, x5, x6). 
  



 71 

 maximize:  c1x1 + c2x2 + c3x3                               = p0                                            (3-9a) 
  
            subject to: a11x1 + a12x2 + a13x3 + x4     = b1 

  
   a21x1 + a22x2 + a23x3        + x5             = b2    (3-9b) 

 
   a31x1 + a32x2 + a33x3               + x6 = b3 

      
     xj > 0         i = 1,2, ...6 
 
If c1 is the largest positive coefficient and b1/a11 is the smallest positive ratio, then x1 enters the 
basis and x4 leaves the basis. Performing the elimination, the result is: 
 
maximize:     (c2 - c1a12/a11)x2  +  (c3 - c1a13/a11)x3 - (c1a14/a11)x4  =  po - c1b1/a11 = p1 (3-10a)          
 
subject to:  x1              + (a12/a11)x2  +             (a13/a11)x3  +     (a14/a11)x4    = b1a11 (3-10b) 
  
  (a22-a21a12/a11)x2  +  (a23-a21a13/a11)x3 -  (a21a14/a11)x4  + x5   = b2-a21b1/a11 

         
    (a32-a31a12/a11)x2  +  (a33-a31a13/a11)x3 -  (a31a14/a11)x4     + x6   = b3-a31b1/a11 

  
 
If p1 > po, then there is an improvement in the objective function, and the solution is continued.  If 
p1 < po, then no improvement in the objective function is obtained, and x is the basic feasible 
solution that maximizes the objective function.  The following theorem given by Gass (7) is: 
  
 If for any basic feasible solution xk = (x1, x2, ... xm) the condition p(xk)  >  p(xj) for all j = 
 1,2,...n (j ≠ k) hold, then xk is a basic feasible solution that maximized the objective 
 function. 
  
The proof of this theorem is similar to that of the previous theorem.  Also, a corresponding result 
can be obtained for the basic feasible solution that minimizes the objective function. 
 
 Further information is given in the textbooks by Garvin (6), Gass (7), and others listed in 
the table on selected texts given at the end of the chapter.  These books give detailed proofs to the 
key theorems and other related ones. 
 
Degeneracy 
 
 In the Simplex Method there is an improvement in the objective function in each step as 
the algorithm converges to the optimum.  However, a situation can arise where there is no 
improvement in the objective function from an application of the algorithm, and this is referred to 
as degeneracy.  Also, there is a possibility that cycling could occur, and the optimum would not 
be reached.  Degeneracy occurs when the right-hand side of one of the constraint equations is equal 
to zero, and this equation is selected for the algebraic manipulation to change variables in the basis 
and evaluate the objective function.  Graphically this occurs when two vertices coalesce into one 
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vertex.  It is reported (6) that it is not unusual for degeneracy to occur in the various applications 
of linear programming.  However, there has not been a case of cycling reported.  An example of 
cycling has been constructed, and a procedure to prevent cycling has been developed.  However, 
these are not usually employed.  The following example from Garvin (6) illustrates degeneracy, 
and an optimal solution is found even if it does occur.  
 
Example 3-4  
 
Solve the following problem by the Simplex Method.  

 
 maximize: 2x1 +   x2  

 
 subject to: x1 + 2x2  <  10  

 
       x1 +  x2    <   6  

 
      x1 -   x2  <   2  

 
     x1 - 2x2  <   1  

 
   2x1 - 3x2  < 3  

 
 A graphical representation of the constraint equations is shown in Figure 3-6.  It shows that 
the last three constraint equations all intersect at vertex C.  Vertex C is said to be overdetermined.  
If the constraint equation x1 - 2x2 < 1 had been 0.9x1 - 2x2 < 1, there would have been two separate 
vertices, as shown in Figure 3-6.  Degeneracy occurs when two or more vertices coalesce into a 
single vertex. 
 
 To illustrate what happens, the Simplex Algorithm will be started at vertex A and move 
through B and C to D, where the optimal solution is p = 10 for x1 = 4 and x2 = 2.   Using the slack 
variables as the initially feasible basis gives: 
 
                          Vertex A  

 2x1 +  x2    = p  p = 0 

    x1  + 2x2  + x3    = 10  x3 = 10 

   x1  +   x2          + x4   = 6  x4 = 6 

   x1  -   x2                 + x5   = 2  x5 = 2 

           x1  -  2x2                       + x6  = 1  x6 = 1 

                       2x1  -  3x2                             + x7 = 3  x7 = 3 
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Then x1 is selected to enter the basis and x6 leaves the basis.  Performing the algebraic 
manipulations, the following results are obtained for vertex B. 
 

 
 
                           Vertex B 

        5x2                           - 2x6  = p - 2  p  = 2 

          4x2 + x3                            -  x6  = 9  x3 = 9 

        3x2          + x4            -   x6  = 5  x4 = 5 

        x2                  + x5      -  x6  = 1  x5 = 1 

         x1 - 2x2                           +  x6  = 1  x1 = 1 

          x2                             - 2x6  + x7 = 1  x7 = 1 

 

Figure 3-6 Graphical Representation of the Constraint Equations for Example 4-4
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Then x2 is selected to enter the basis and either the equation with x5 or the equation with x7 can be 
used for the algebraic manipulations. The following calculations use the equation with x7 and then 
use the one with x5 to illustrate the effect of these decisions.  (In a computer program the decision 
would be made rather arbitrarily, e.g., by selecting the one with the lowest subscript.) 
 
 Performing the algebraic manipulations to have x7 leave the basis gives: 
 
                          Vertex C 

 +  8x6 - 5x7        = p - 7  p  = 7 

      x3     +  7x6  - 4x7   =  5  x3 = 5 

                x4     +  5x6 - 3x7  =  2  x4 = 2 

         x5  +  x6 - x7  =  0  x5 = 0 

 x1      -  3x6+ 2x7  =  3  x1 = 3 

           x2    -  2x6 + x7  =  1  x2 = 1 

The right-hand side of the third constraint equation is zero, and this causes x5 = 0 which contradicts 
the fact that variables in the basis are to be greater than zero.   
 
 However, the procedure is to continue with the Simplex Method selecting x6 to enter the 
basis, and the third constraint equation is used for the algebraic manipulations to have positive (or 
zero) right-hand sides.  Then x5 leaves the basis, and the result is: 
 
                 Vertex C 
                 - 8x5              + 3x7               = p - 7             p  = 7 

 
 x3-         7x5      + 3x7 =  5  x3 = 5 
 

                    x4 - 5x5              + 2x7 =  2  x4 = 2 
     
        x5     + x6  -  x7 =  0  x6 = 0 

 
  x1            + 3x5                 -  x7 =  3  x1 = 3 
 
 
               x2            + 2x5                 -  x7 =  1  x2 = 1 
 
There was no improvement in the objective function and the Simplex Method did not move from 
vertex C.  
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The procedure is continued having x7 enter the basis and x4 leave the basis.  The results of the 
algebraic manipulations are: 
                         Vertex D 
 

 - 3/2 x4    -½ x5   = p - 10 p  = 10 
    

 x3  - 3/2 x4 + ½ x5   =  2  x3 = 2 
    
    ½ x4  - 5/2 x5           +x7 =  1  x7 = 1 

         
    ½ x4  - 3/2 x5 +     x6  =  1  x6 = 1 

 
 x1  +   ½x4  +  ½x5   =  4  x1 = 4 

 
       x2  +   ½ x4 -  ½ x5   =  2  x2 = 2  

 
 
The maximum has been reached since the coefficients of the variables in the objective function are 
all negative.  The simplex algorithm was unaffected by the right-hand side of one of the equations 
becoming zero during the application of the algorithm. 
 
 Now returning to vertex B and selecting x5 to enter the basis, the result of the manipulations 
is:  
                           Vertex C 
 

- 5x5  + 3x6  = p - 7  p  = 7 
  
  x3 - 4x5 + 3x6  =   5  x3 = 5 
 

         x4 - 3x5 + 2x6  =   2  x4 = 2 
 
    x2  + x5  -   x6  =   1  x2 = 1 

 
 x1            + 2x5  -   x6  =   3  x1 = 3 

 
-  x5   -    x6   + x7 =   0  x7 = 0 

  
 
 Then selecting x6 to enter the basis and x4 to leave the basis, the result of the manipulation 
is the optimum given at vertex D previously.  Consequently, when using x5 there is an improvement 
in the objective function and one fewer applications of the Simplex Algorithm were required. 
 
 Unfortunately, the effect of a constraint equation selection with degeneracy cannot be 
predicted in advance for large problems, and an arbitrary selection is made, as previously 
mentioned.  In conclusion, degeneracy is not unusual, but it has yet to affect the solution of linear 
programming problems in industrial applications.    
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Artificial Variables 
 
 To start a linear programming problem, it is necessary to have an initially feasible basis as 
required in Step 3 of the Simplex Method and as shown in Equation (3-9b).  In the illustrations up 
to now we have been able to use the slack variables as the initially feasible basis.   However, the 
constraints generally are not in such a convenient form, so another procedure is used to have an 
initially feasible basis, artificial variables.  In this technique a new variable, an artificial variable, 
is added to each constraint equation to give an initial feasible basis to start the solution.  This is 
permissible, and it can be shown that the optimal solution to the original problem is the optimal 
solution to the problem with artificial variables.  However, it is necessary to modify the objective 
function to ensure that all of the artificial variables leave the basis.  This is accomplished by adding 
terms to the objective functions that consist of the product of each artificial variable and a negative 
coefficient that can be made arbitrarily large in magnitude for the case of maximizing the objective 
function.  Thus, this will insure that the artificial variables are the first ones to leave the basis 
during the application of the Simplex Method.  
 
 At this point it is reasonable to question if this would not be a significant amount of 
computations for convenience only.  The answer would be yes if only one small linear 
programming problem was to be solved.  However, this is not usually the case, and the margin for 
error is reduced significantly by avoiding manipulation of the constraint equations in a large 
problem.   In fact, large linear programming codes only require the specification of the values of 
the coefficients in the objective function and the coefficients, right-hand sides and the types of 
inequalities of the constraint equations to obtain an optimal solution.  These programs can solve 
linear programming problems having thousands of constraints and thousands of variables (12).  
Consequently, developing a linear model of a plant or a process is the main effort required, and 
then one of the available general linear programming codes can be used to obtain the optimal 
solution.  Also, most major companies have a group that includes experts in using linear 
programming; and also, there are firms that specialize in industrial applications of linear 
programming.  
 
 The following example illustrates the use of artificial variables as they might be employed 
in a computer program.  The technique is sometimes called the “big M method.”  Another method, 
the “Two-Phase” method is comparable.  See Problem 3-25. 
 
Example 3-5 (8) 
 
Solve the following linear programming problem using artificial variables. 

 
   minimize:   x1 + 3x2  

 
   subject to:   x1 + 4x2 > 24  
    

  5x1 +   x2 > 25  
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Slack variables x3 and x4 and artificial variables a1 and a2 are introduced as shown below.  The 
artificial variables will be the initially feasible basis since the slack variable would give negative 
values, and algebraic manipulations would be required to have x1 and x2 be the initially feasible 
basis.  In the objective function M is the coefficient of the artificial variables a1 and a2, and M can 
be made arbitrarily large to drive a1 and a2 from the basis.  

 
   minimize:   x1 + 3x2   +        M a1  + M a2   = c  

 
   subject to:   x1 + 4x2  - x3      +  a1            = 24  

 
  5x1 +   x2        - x4             +  a2  = 25           

 
The two constraints equations are used to eliminate a1 and a2 from the objective function.  This is 
Step 4 in the Simplex Method, and the objective function is a large number, 49M, as shown below.    
 

(1 - 6M) x1 + (3 - 5M) x2 + M x3 + M x4   = c – 49 M   c = 49 M   
 

  x1 +          4 x2 -     x3  + a1  = 24             a1 = 24  
           

             5x1 +             x2  -     x4        +a2 = 25             a2 = 25  
 
Applying the Simplex Algorithm, x1 enters the basis since it has the negative coefficient that is 
largest in magnitude.  The second constraint equation is used to perform the algebraic 
manipulations, and a2 leaves the basis.  Performing the manipulations gives: 
 

(14/5 - 19/5M) x2 + Mx3 + (1/5 - 1/5M) x4   -    (1/5 - 6/5M) a2 = c - 19M - 5 
     
     19/5x2    -  x3   +                1/5x4   + a1            - 1/5a2 = 19 

 
 x1     +    1/5x2       -                 1/5x4   +                     1/5a2 = 5 

 
c = 19M + 5  a1 = 19  x1 = 5 

 
Continuing with the Simplex Algorithm x2 enters the basis.  The first constraint equation is used 
for the algebraic manipulations, and a1 leaves the basis.  Performing the manipulations gives: 
 

  14/19    x3 +  5/95 x4 + (-14/19 + M) a1 + (-5/95 + M)a2  = c - 19 

          x2  - 5/19x3 +  1/19 x4 +   5/19 a1               _                   1/19a2    =  5 

  x1      +       1/19x3   - 20/95 x4 -    1/19a1            +           20/95a2  =  4 

c = 19      x1 = 4     x2 = 5 
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 Now the terms containing the artificial variables a1 and a2 can be dropped from the 
objective function and the constraint equations.  The reason is that they both have large positive 
coefficients in the objective function and will not reenter the basis.  The problem is continued 
without them to reduce computational effort.  However, for this problem the optimum has been 
reached since all of the coefficients in the objective function are positive, and no further reduction 
can be obtained. 
 
 In addition to the infeasible difficulty, there is another problem that can be encountered in 
linear programming, an unbounded problem, which is usually caused by a blunder.  In this 
situation, the constraint equations do not confine the variables to finite values.  This is illustrated 
by changing the linear programming problem in Example 3-5 from one of minimizing x1 + 3x2 to 
maximizing  x1 + 3x2 subject to the constraints given in the problem.  The constraints are of the 
greater than or equal to type, and they are satisfied with values of x1 > 4 and x2 > 5.  Then for 
maximizing the objective function the values of x1 and x2 could be increased without bounds to 
have the objective function also increase without bounds.  Thus, the problem is said to be 
unbounded. 
 
Formulating the Linear Programming Problem – A Simple Refinery 
 
 To this point in the discussion of linear programming the emphasis has been on the solution 
of problems by the Simplex Method.  In this section procedures will be presented for the 
formulation of the linear programming problem for a plant or process.  This will include 
developing the objective function from the cost or profit of the process or plant and the constraint 
equations from the availability of raw materials, the demand for products and equipment capacity 
limitations and conversion capabilities.  A simple petroleum refinery will be used as an example 
to illustrate these procedures.  Also, an optimal solution will be obtained using a large linear 
programming code to illustrate the use of one of these types of programs available on a large 
computer.  In the following section the optimal solution of the general linear programming problem 
will be extended to a sensitivity analysis, and these results will be illustrated using the information 
computed from the large linear programming code for the simple refinery example.  
  
 In Figure 3-7 the flow diagram for the simple petroleum refinery is shown, and in Table 3-
2 the definition is given for the name of each of the process streams.  There are only three process 
units in this refinery, and these are a crude oil atmospheric distillation column, a catalytic cracking 
unit and a catalytic reformer.  The crude oil distillation column separates crude oil into five streams 
which are fuel gas, straight run gasoline, straight run naphtha, straight run distillate and straight 
run fuel oil.  Part of the straight run naphtha is processed through the catalytic reformer to improve 
its quality, i.e., increase the octane number.  Also, parts of the straight run distillate and straight 
run fuel oil are processed through the catalytic cracking unit to improve their quality so they can 
be blended into gasoline.  The refinery produces four products, and these are premium gasoline, 
regular gasoline, diesel fuel and fuel oil.  Even for this simple refinery there are 33 flow rates for 
which the optimal values have to be determined.  This small problem points out one of the 
difficulties of large linear programming problems.  The formulation of the problem is quite 
straightforward.  However, there is a major accounting problem in keeping track of a large number 
of variables, and the collection of reliable data to go with these variables is usually very time 
consuming (9). 
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Figure 3-7 Process Flow Diagram for a Simple Refinery
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Table 3-2 Definitions of the Names of the Process Streams for the Simple Petroleum Refinery 
 
No. Name   Definition (Flow rates are in barrels per day) 

 1 1 CRUDE Crude oil flow rate to the atmospheric crude distillation column (AD) 
  2 FGAD  Fuel gas flow rate from AD 

  3 SRG  Straight run gasoline flow rate from AD 
  4 SRN  Straight run naphtha flow rate from AD 
  5 SRDS  Straight run distillate flow rate from AD 
  6 SRFO  Straight run fuel oil flow rate from AD 

  7 SRNRF Straight run naphtha feed rate to the reformer (RF) 
  8 FGRF  Fuel gas flow rate from the reformer 
  9 RFG  Reformer gasoline flow rate 
 10 SRDSCC Straight run distillate flow rate to the catalytic cracking unit (CCU) 
 11 SRFOCC Straight run fuel oil flow rate to the CCU 

 12 FGCC  Fuel gas flow rate from the CCU 
 13 CCG  Gasoline flow rate from CCU 
 14 CCFO  Fuel oil flow rate from CCU 

 15 SRGPG Straight run gasoline flow rate for premium gasoline (PG) blending 
 16 RFGPG Reformer gasoline flow rate for PG blending 

17 SRNPG Straight run naphtha flow rate for PG blending 
 18 CCGPG CCU gasoline flow rate for PG blending 

 19 PG  Premium gasoline flow rate 
 20 SRGRG Straight run gasoline flow rate for regular gasoling (RG) blending 
 21 RFGRG Reformer gasoline flow rate for RG blending 
 22 SRNRG Straight run naphtha flow rate for RG blending 
 23 CCGRG CCU gasoline flow rate for RG blending 

 24 RG  Regular gasoline flow rate 
 25 SRNDF Straight run naphtha flow rate for diesel fuel (DF) blending 

 26 CCFODF CCU fuel oil flow rate for DF blending 
 27 SRDSDF Straight run distillate flow rate for Df blending 
 28 SRFODF Straight run fuel oil flow rate for DF blending 
 29 DF  No. 2 diesel fuel flow rate 
 30 CCFOFO CCU fuel oil flow rate for fuel oil (FO) blending 
 31 SRDSFO Straight run distillate flow rate for FO blending 
 32 SRFOFO Straight run fuel oil flow rate for FO blending 

33 FO  No. 6 fuel oil flow rate 



 81 

 In Table 3-3 the capacities, operating costs, process stream, mass yields, and volumetric 
yields are listed for the three process units in the refinery.  These are typical of a medium size 
refinery in the Gulf coast area.  The mass yields were taken from those reported by Aronfsky, 
Dutton and Tayyaabkhan (10) and were converted to volumetric yields by using API gravity data.  
The operating costs were furnished by the technical division of a major oil company that has 
refineries on the Gulf Coast. 
 
Table 3-3 Capacities, Operating Costs and Volumetric Yields for the Refinery Process Units 
 
         Mass Yield Volumetric 
    Operating    of Output  Yields of 
  Capacity Cost     Streams Output Stream 
Unit  (bbl/day)  ($/bbl)    Input    Output  (1b/1b)  (bbl/bbl) 
Crude Oil 100,000   1.00    CRUDE     FGAD   0.029    35.42 
Atmospheric      SRG   0.236    0.270 
Distillation             SRN   0.223    0.237 
Column      SRDS   0.087    0.086 
       SRFO  0.426    0.372 

 
Catalytic  25,000   2.50    SRNRF     FGRF  0.138    158.7 
Reformer       RFG   0.862    0.928 
 
Catalytic  30,000   2.20   SRDSCC     FGCC   0.273    336.9 
Cracking      CCG   0.536    0.619 
Unit       CCFO   0.191    0.189 
  SRFOCC     FGCC   0.277    386.4 
       CCG   0.527    0.688 
       CCFO   0.196    0.220  
 
 
 
 The quality specification and physical properties are given in Table 3-4 for the process 
streams, and the crude oil cost and the product sales prices are given in Table 3-5.  The data in 
Table 3-4 was reported by Aronfsky et.al. (29), and the cost and prices in Table 3-5 were obtained 
from the Oil and Gas Journal (11).  The information given in Table 3-3, 3-4, and 3-5 is required 
to construct the objective function and the constraint equations for the linear programming model 
of the refinery. 
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Table 3-4 Quality Specifications and Physical Properties for Products and Intermediate Streams  
      for the Refinery 
 
    Motor  Vapor    Sulfur 
    Octane  Pressure Density Content 
Stream    Number (mm Hg) (1b/bbl) (1b/bbl)  
Premium Gasoline  > 93.0  < 12.7         -      - 
Regular Gasoline  > 87.0  < 12.7         -      - 
Diesel Fuel      -     -  < 306.0   < 0.5 
Fuel Oil      -     -  < 352.0   < 3.0 
SRG   78.5    18.4       -      - 
RFG     104.0        2.57         -      - 
SRN      65.0         6.54       272.0     0.283 
CCG       93.7        6.90        -      - 
CCFO         -      -    294.4      0.353 
SRDS        -      -    292.0      0.526 
SRFO       -     -    295.0      0.980 
  
 
Table 3-5 Crude Oil Cost and Product Sales Prices for the Petroleum Refinery 
 
 Gulf Coast crude oil   $32.00 / bbl 
 Premium gasoline   $45.36 / bbl 
 Regular gasoline   $43.68 / bbl 
 No. 2 diesel fuel   $40.32 / bbl 
 No. 6 fuel oil    $13.14 / bbl 
 Fuel gas    $0.01965 / bbl or $3.50 MSCF 
 
 
 It is standard practice to present the linear programming problem for the refinery in matrix 
form as shown in Figure 3-8.  In the first row the coefficients of the terms in the objective function 
are listed under their corresponding variables.  The sales prices are shown as positive, and the cost 
are shown as negative, so the problem is formulated to maximize the profit.  These numbers were 
taken from Table 3-5, and it was convenient to combine the crude cost ($32.00/Barrel) with the 
operating cost of the crude oil atmospheric distillation column ($1.00/barrell) to show a total cost 
of $33.00 per barrel of crude oil processed in Figure 3-8.  Consequently, the first row of Figure 3-
8 represents the objective function given below: 
    
   -33.0 CRUDE + 0.01965 FGAD - 2.50 SRNRF + 0.01965 FGRF - 2-20 SRDSCC 
    -2.20 SRFOCC + 0.01965 FGCC + 45.36 PG + 43.68 RG + 40.32 DF + 13.14 FO 
 
 The constraint equations begin with the second row in Figure 3-8.  They are grouped in 
terms of quality and quantity constraints on the crude oil and products, in terms of the performance 
of the process unit using the volumetric yields, and in terms of the stream splits among the process 
units and blending into the products. 
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 The second row is the crude availability constraint limiting the refinery to 110,000 
barrels/day.  This is followed by the four quantity and quality constraints associated with each 
product.  These are the daily production and blending requirements and two quality constraints.  
These have been extracted from Figure 3-8 and are shown in Table 3-6 for the four products.  The 
minimum production constraint states that the refinery must produce at least 10,000 barrels/day of 
premium gasoline to meet the company's marketing division's requirements.  The blending 
constraints state that the sum of the streams going to produce premium gasoline must equal the 
daily production of premium gasoline.  The quality constraints use linear blending, and the sum of 
each component weighted by its quality must meet or exceed the quality of the product.  This is 
illustrated with premium gasoline octane rating blending constraint which is written as the 
following using the information from the matrix: 
 
 78.5 SRGPG + 104.0 RFGPG + 65.0 SRNPG + 93.7 CCGPG - 93.0 PG > 0 (3-11) 
 
Here the premium gasoline must have an octane number of at least 93.0.  Corresponding, inequality 
constraints are specified in Table 3-6 using the same procedure for premium gasoline vapor 
pressure, regular gasoline octane number and vapor pressure, diesel fuel density and sulfur content 
and fuel oil density and sulfur content.  
 
 The next set of information given in the constraint equation matrix, Figure 3-8, is the 
description of the operation of the process unit using the volumetric yield shown in Table 3-3.  
This section of the matrix has been extracted and is shown in Table 3-7 for the three process units.   
Referring to the volumetric yields for the crude oil distillation column, these data states that 35.42 
times the volumetric flow rate of crude produces the flow rate of fuel gas from the distillation 
column, FGAD, i.e.: 
 
    35.42 CRUDE - FGAD = 0 (3-12) 
 
Corresponding yields of the other products from crude oil distillation are determined the same 
way. For the catalytic reformer the yield of the fuel gas (FGRF) and the reformer gasoline (RFG) 
are given by the following equations:  
 
  158.7 SRNRF - FGRF = 0  (3-13) 
 
    0.928 SRNRF - RFG = 0  (3-14) 
 
Similar equations are used in the matrix, Figure 3-8, and are summarized in Table 3-7 for the 
process units in the simple refinery.  
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Table 3-6 Quantity and Quality Constraints for the Refinery Products 
 
Premium Gasoline 
      SRGPG  RFGPG  SRNPG  CCGPG   PG    RHS  
Min. P.G. Production                   1.0 > 1,000 
PG blending      1.0      1.0     1.0     1.0   - 1.0 = 0 
PG octane rating    78.5   104.0   65.0   93.7  - 93.0 > 0 
PG vapor pressure      18.4       2.57     6.54     6.90  - 12.7 < 0 
 
Regular Gasoline 
      SRGRG  RFGRG  SRNRG  CCGRG   RG     RHS  
Min R.G. production                  1.0  < 10,000 
RG blending    1.0      1.0     1.0   1.0   - 1.0  = 0 
RG octane rating      78.5   104.0   65.0  93.7  - 87.0  < 0 
RG vapor pressure          18.4       2.57     6.54    6.90  - 12.7  < 0 
 
Diesel Fuel 
      SRNDF  CCFODF SRDSDF SRFODF   DF     RHS   
Min D.F. production                 1.0  > 10,000  
DF blending    1.0    1.0   1.0   1.0   - 1.0  = 0 
DF density spec.    272.0     294.4     292.0    295.0 - 306.0  < 0 
DF sulfur spec.   0.283     0.353  0.526  0.980 - 0.50  < 0 
 
Fuel Oil 
      CCFOFO  SRDSFO  SRFOFO    FO     RHS   
Min. FO production             1.0   > 10,000 
FO blending    1.0    1.0    1.0      - 1.0      = 0  
FO density spec.     294.4         292.0     295.0  - 352.0        < 0 
FO sulfur spec.   0.353     0.526    0.980      - 3.0        < 0 
  
 
 The use of volumetric yields to give linear equations to describe the performance of the 
process units is required for linear programming.  The results will be satisfactory as long as the 
volumetric yields precisely describe the performance of these process units.  These volumetric 
yields are a function of the operating conditions of the unit, e.g. temperature, feed flow rate, 
catalyst activity, etc.  Consequently, to have an optimal solution these volumetric yields must 
represent the best performance of the individual process units.  To account for changes in 
volumetric yields with operating conditions sometimes a separate simulation program is coupled 
to the linear programming code to furnish best values of the volumetric yields.   Then an iterative 
procedure is used to converge to the optimal operating conditions with corresponding values of 
volumetric yields from the simulation program.  (See Figure 4-5.)  
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Table 3-7 Process Unit Material Balances using Volumetric Yields 
 
       CRUDE FGAD SRG SRN SRDS SRFO   RHS   
 
 Crude oil atmospheric distillation column 
 AD Capacity  1.0            < 100,000  
 FGAD Yield  35.42 - 1.0         = 0  
 SRG Yield   0.270   - 1.0       = 0  
 SRN Yield   0.237     - 1.0     = 0  
 SRDS Yield  0.086       - 1.0   = 0  
 SRFO Yield  0.372         - 1.0 = 0  
 
 Catalytic reformer  
       SRNRF     FGRF  RFG     RHS  
 RF Capacity  1.0            < 25,000  
 FGRF Yield  158.7  - 1.0        = 0  
 RFG Yield   0.928    - 1.0      = 0  
 
 Catalytic cracking unit  
       SRDSCC SRFOCC FGCC CCG CCFO   RHS   
 CC Capacity  1.0   1.0         < 30,000  
 FGCC Yield  336.9  86.4  - 1.0     = 0  
 CCG Yield  0.619  0.688   - 1.0    = 0  
 CCFO Yield  0.189  0.220     - 1.0  = 0  
 
 
 
 The last group of terms in Figure 3-8 gives the material balance around points where 
streams split among process units and blend into products.  The stream to be divided is given a 
coefficient of one, and the resulting streams have a coefficient minus one.  For example, the 
straight run naphtha from the crude oil distillation is split into four streams.  One is sent to the 
catalytic reformer and the other three are used in blending premium gasoline, regular gasoline and 
diesel fuel. The equation for this split is:  
  
  SRN - SRNRF - SRNPG - SRNRG - SRNDF = 0 (3-15) 
 
There is a total of seven stream splits as shown in Figure 3-8.  
 
 The information is now available to determine the optimum operating conditions of the 
refinery.  There are 83 independent variables, and 38 constraint equations (23 equality constraints 
and 15 equality constraints).  The optimal solution was obtained using the Mathematical 
Programming System Extended (MPSX) program run on the IBM 4341.  The format used by this 
linear programming code has become an industry standard according to Murtagh (12) and is not 
restricted to the MPS series of codes developed originally for IBM computers.  Consequently, we 
will also describe the input procedure for the code because of its more general nature.  Also, we 
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will use these refinery results to illustrate the additional information that can be obtained from 
sensitivity analysis.  Similar, but not as detailed, results can be obtained using Excel.  
 
Solving the Linear Programming Problem for the Simple Refinery 
 
 Having constructed the linear programming problem matrix, we are now ready to solve the 
problem using a large linear programming computer program.  The input and output for these 
programs has become relatively standard (12) making the study of one beneficial in the use of any 
of the others.  The solution of the simple refinery has been obtained using the IBM Mathematical 
Programming System Extended (MPSX).  The detailed documentation is given in IBM manuals 
(15, 16) and by Murtagh (12) on the use of the program, and the following outlines its use for the 
refinery problem.  The MPSX control program used to solve the problem is given in Table 3-8.  
The first two commands, PROGRAM and INITIALZ, define the beginning of the program and set 
up standard default values for many of the optional program parameters. TITLE writes the 
character string between the quotation marks at the top of every page of output.  The four MOVE 
commands give user specified names to the input data (XDATA), internal machine code version 
of the problem (XPBNAME), objective function (XOBJ), and right-hand-side vector (XRHS).  
Next, CONVERT calls a routine to convert the input data from binary coded decimal (BCD) or 
communications format into machine code for use by the program, and BCDOUT has the input 
data printed. The next three commands, SETUP, CRASH and PRIMAL, indicate that the objective 
function is to be maximized, a starting basis is created, and the primal method is to be used to solve 
the problem.  Output from PRIMAL is in machine code so SOLUTION is called to produce BCD 
output of the solution.  The RANGE command is used in the sensitivity analysis to determine the 
range over which the variables, right-hand-sides and the coefficients may vary without changing 
the basis.  The last two statements, EXIT and PEND, signal the end of the control program and 
return control over to the computer's operating system.  
 
 Input to the MPSX program is divided into four sections:  NAME, ROWS, COLUMNS, 
and RHS.  The first two are shown in Table 3-9.  The NAME section is a single line containing 
the identifier, NAME, and the user-defined name for the block of input data that follows.  (MPSX 
has provisions for keeping track of several problems during execution of the control program).  
When the program is run it looks for input data with the same name as that stored in the internal 
variable XDATA.  The ROWS section contains the name of every row in the model, preceded by 
a letter indicating whether it is a non-constrained row (N), the objective function, a less-than-or-
equal-to constraint (L), a greater-than-or-equal-to constraint (G), or an equality constraint (E). 
 
 The COLUMNS section of the input data is shown in Table 3-10.  It is a listing of the non-
zero elements in each column of the problem matrix (Figure 3-8).  Each line contains a column 
name followed by up to two row names and their corresponding coefficients from Figure 3-8.  
 
 The last input section is shown in Table 3-11.  Here, the right- hand-side coefficients are 
entered in the same way that the coefficients for each column were entered in the COLUMNS 
section, i.e., only the non-zero elements.  The end of the data block is followed by an ENDATA 
card. 
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 The solution to the refinery problem is presented in Table 3-12 (a) and (b) as listed in the 
printout from the MPSX program.  It is divided into two sections, the first providing information 
about the constraints (rows) and the second giving information about the refinery stream variables 
(columns).  
 
Table 3-8 Mathematical Programming System Control Program for the Simple Refinery  
 
  PROGRAM  
  INITIALZ  
  TITLE('SIMPLE REFINERY MODEL')  
  MOVE(XDATA,'REFINERY')  
  MOVE(XPBNAME,'REFINERY')  
  MOVE(XOBJ,'OBJ')  
  MOVE(XRHS,'RHS')  
  CONVERT('SUMMARY')  
  BCDOUT  
  SETUP('MAX')  
  PICTURE 
  CRASH  
  PRIMAL  
  SOLUTION  
  RANGE  
  EXIT  
  PEND  
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Table 3-9   MPSX Input NAME and ROWS Sections  
   NAME  REFINERY  
   ROWS  
    N OBJ  
    L CRDAVAIL  
    G PGMIN  
    E PGBLEND  
    G  PGOCTANE  
    L PGVAPP  
    G RGMIN  
    E  RGBLEND  
    G RGOCTANE  
    L RGVAPP  
    G DFMIN  
    E DFBLEND  
    L  DFDENS  
    L DFSULFUR  
    G FOMIN  
    E FOBLEND  
    L  FODENS  
    L FOSULFUR  
    L ADCAP  
    E ADFGYLD  
    E ADSRGYLD  
    E ADNYLD  
    E ADDSYLD  
    E ADFOYLD  
    L RFCAP  
    E RFFGYLD  
    E RFRFGYLD  
    L CCCAP  
    E CCFGYLD  
    E CCGYLD  
    E CCFOYLD  
    E SRGSPLIT  
    E SRNSPLIT  
    E SRDSSPLT  
    E SRFOSPLT  
    E RFGSPLIT  
    E CCGSPLIT  
    E CCFOSPLT  
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Table 3-10   MPSX Input COLUMNS Section  
 
COLUMNS  
 CRUDE OBJ  -33.0  CRDAVAIL 1.0  
 CRUDE ADCAP 1.0  ADFGYLD 35.42  
 CRUDE ADSRGYLD 0.270  ADNYLD 0.237  
 CRUDE ADDSYLD 0.087  ADFOYLD 0.372  
 FGAD  OBJ  0.01965 ADFGYLD -1.0  
 SRG  ADSRGYLD -1.0  SRGSPLIT 1.0  
 SRN  ADNYLD -1.0  SRNSPLIT 1.0  
 SRDS  ADDSYLD -1.0  SRDSSPLT 1.0  
 SRFO  ADFOYLD -1.0  SRFOSPLT 1.0  
 SRNRF OBJ  -2.50  RFCAP 1.0  
 SRNRF RFFGYLD 158.7  RFRFGYLD 0.928  
 SRNRF SRNSPLIT -1.0   
 FGRF  OBJ  0.01965 RFFGYLD -1.0  
 RFG  RFRFGYLD -1.0  RFGSPLIT 1.0  
 SRDSCC OBJ  -2.20  CCCAP 1.0  
 SRDSCC CCFGYLD 336.9  CCGYLD 0.619  
 SRDSCC CCFOYLD 0.189  SRDSSPLT -1.0  
 SRFOCC OBJ  -2.20  CCCAP  1.0  
 SRFOCC CCFGYLD 386.4  CCGYLD 0.688  
 SRFOCC CCFOYLD 0.2197  SRFOSPLT -1.0  
 FGCC  OBJ  0.01965 CCFGYLD -1.0  
 CCG  CCGYLD -1.0  CCGSPLIT 1.0  
 CCFO  CCFOYLD -1.0  CCFOSPLT 1.0  
 SRGPG PGBLEND 1.0  PGOCTANE 78.5  
 SRGPG PGVAPP 18.4  SRGSPLIT -1.0  
 RFGPG PGBLEND 1.0  PGOCTANE 104.0  
 RFGPG  PGVAPP 2.57  RFGSPLIT -1.0  
 SRNPG PGBLEND 1.0  PGOCTANE 65.0  
 SRNPG PGVAPP 6.54  SRNSPLIT -1.0  
 CCGPG PGBLEND 1.0  PGOCTANE 93.7  
 CCGPG PGVAPP 6.90  CCGSPLIT -1.0  
 PG  OBJ  45.36  PGMIN 1.0  
 PG  PGBLEND -1.0  PGOCTANE -93.0  
 PG  PGVAPP -12.7  

SRGRG RGBLEND 1.0  RGOCTANE 78.5  
 SRGRG RGVAPP 18.4  SRGSPLIT -1.0  
 RFGRG RGBLEND 1.0  RGOCTANE 104.0  
 RFGRG RGVAPP 2.57  RFGSPLIT -1.0  

SRNRG RGBLEND 1.0  RGOCTANE 65.0 
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Table 3-10 MPSX Input COLUMNS Section (continued)  
 
 CCFODF DFBLEND 1.0  DFDENS 294.4  
 CCFODF DFSULFUR 0.353  CCFOSPLT -1.0 
 SRDSDF DFBLEND 1.0  DFDENS 292.0  
 SRDSDF DFSULFUR 0.526  SRDSSPLT -1.0  
 SRFODF DFBLEND 1.0  DFDENS 295.0  
 SRFODF DFSULFUR 0.98  SRFOSPLT -1.0  
 DF  OBJ  40.32  DFMIN 1.0  
 DF  DFBLEND -1.0  DFDENS -306.0  
 DF  DFSULFUR -0.5  
 CCFOFO FOBLEND 1.0  FODENS 294.4  
 CCFOFO FOSULFUR 0.353  CCFOSPLT -1.0  
 SRDSFO FOBLEND 1.0  FODENS 292.0  
 SRDSFO FOSULFUR 0.526  SRDSSPLT -1.0  
 SRFOFO FOBLEND 1.0  FODENS 295.0  
 SRFOFO FOSULFUR 0.98  SRFOSPLT -1.0  
 FO  OBJ  13.14  FOMIN 1.0  
 FO  FOBLEND  -1.0  FODENS -352.0  
 FO  FOSULFUR -3.00  
 
 
Table 3-11   MPSX Input Right Hand Side Section  
 
RHS  
 RHS  CRDAVAIL  110000.0 PGMIN     10000.0   
 RHS  RGMIN   10000.0 DFMIN     10000.0  
 RHS  FOMIN   10000.0 ADCAP    100000.0  
 RHS  RFCAP   25000.0 CCCAP     30000.0  
ENDATA  
 
 
 In the ROWS section of Table 3-12(a) there are eight columns of output.  The first is the 
internal identification number given to each row by the program.  The second column is the name 
given to the rows in the input data.  Next is the AT column which contains a pair of code letters to 
indicate the status of each row in the optimal solution.  Constraint rows in the basis have the code 
BS, non-basis inequality constraints that have reached their upper or lower limits have the code 
UL or LL.  Equality constraints have the status code EQ.  The fourth column is the row activity, 
as defined by the equation:  
 

       

 
This is the optimal value of the left-hand side of the constraint equations.  However, it is 

computed by subtracting the slack variable from the right-hand side.  The column labeled SLACK 
ACTIVITY contains the value of the slack variable for each row.  The next three columns are 
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associated with sensitivity analysis.  The sixth and seventh columns show the lower and upper 
limits placed on the row activities.  The final column, DUAL ACTIVITY, gives Lagrange 
multipliers that are also called the simplex multipliers, shadow prices and implicit prices.  As will 
be seen subsequently in sensitivity analysis, they will relate changes in the activity to changes in 
the objective function.  Also, the dot in the table means zero, the same convention used in the 
Simplex Tableau. 
  

Examination of this section of output shows that the activity (or value) of the objective 
function (row 1, OBJ) is 701,823.4, i.e., the maximum profit for the refinery is $701,823.40 per 
day.  Checking the rows which are at their lower limits, LL, for production constraints one finds 
that only row 15, FOMIN, is at its lower limit of 10,000 bbl/day indicating that only the minimum 
required amount of fuel oil should be produced.  However, row 3, PGMIN, row 7, RGMIN, and 
row 11, DFMIN, are all above their lower limits with values of 47,113 bbl/day for premium 
gasoline, 22,520 bbl/day for regular gasoline, and 12,491 bbl/day for diesel fuel.  More will be 
said about the information in this table when sensitivity analysis is discussed.  

 
 The COLUMNS section of Table 3-12(b) for the optimal solution also has eight columns.  
The first three are analogous to the first three in the ROWS section, i.e., an interval identification 
number, name of the column, and whether the variable is in the basis BS or is at its upper or lower 
limit, UL or LL.  The fourth column, ACTIVITY, contains the optimal value for each variable.  
The objective function cost coefficients are listed in the column INPUT COST.  REDUCED COST 
is the amount by which the objective function will be increased per unit increase in each non-basis 
variable and is part of the sensitivity analysis.  It is given by cj’ of Equation (4-29). 
 

For this simple refinery model there were 33 variables whose optimal value were 
determined, and 38 constraint equations were satisfied.  For an actual refinery there would be 
thousands of constraint equations, but they would be developed in the same fashion as described 
here.  As can be seen, the model (constraint equations) was simple, and only one set of operating 
conditions was considered for the catalytic cracking unit, catalytic reformer and the crude 
distillation column.  

 
If the optimal flow rates do not match the corresponding values for volumetric yields, a 

search can be performed by repeating the problem to obtain a match of the optimal flow rates and 
volumetric yields.  This has to be performed using a separate simulation program that generates 
volumetric yields from flow rate through the process units.  (See Figure 3-5).  Thus, the linear 
model of the plant can be made to account for nonlinear process operations.  Another procedure, 
successive (or sequential) linear programming uses linear programming iteratively, also; and it 
will be discussed in Chapter 5.  The state of industrial practice using both linear programming and 
successive linear programming is described by Smith and Bonner (13) for configuration of new 
refineries and chemical plants, plant expansions, economic evaluation of investment alternatives, 
assessment of new technology, operating plans for existing plants, variation in feeds, costing and 
distribution of products, evaluation of processing and exchange agreements, forecasting of 
industry trends and economic impact of regulatory changes. 
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 Table 3-12(a) MPSX Output for Optimal Solution, Section 1 - Rows 
 
NUMBER ROW AT  ACTIVITY SLACK   LOWER  UPPER  DUAL  
           ACTIVITY LIMIT   LIMIT  ACTIVITY 
              
  1 OBJ   BS  701823.4  -701823.4  NONE   NONE  1.000  
  2 CRDAVAIL BS  100000.0  10000.0  NONE   10000.0  .  
  3 PGMIN  BS  47113.2  -37113.2  10000.0  NONE  .  
  4 PGBLEND EQ  .    .    .    .   19.320  
  5 PGOCTANE LL  .    .    .    NONE  0.280  
  6 PGVAPP  BS  -188607.2  188607.2  NONE   .   .  
  7 RGMIN  BS  22520.4  12520.4  10000.0  NONE  .  
  8 RGBLEND EQ   .    .    .    .   19.320  
  9 RGOCTANE LL  .    .    .    NONE  0.280  
 10 RGVAPP  UL   .    .    NONE   .   .  
 11 DFMIN  BS  12491.0  -2491.0  10000.0  NONE  .   
 12 DFBLEND EQ  .    .    .    .   40.320 
 13 DFDENS  BS  -165458.8  165458.8  NONE   .   .  
 14 DFSULFUR UL  .    .    NONE   .   .  
 15 FOMIN  LL  10000.0  .    10000.0  NONE  27.180  
 16 FOBLEND EQ  .    .    .    .   40.320  
 17 FODENS  BS  -571996.8  571996.8  NONE   .   .  
 18 FOSULFUR BS  -22286.7  22286.7  NONE   .   .  
 19 ADCAP  UL  100000.0  .    NONE   100000.0 -8.154  
 20 ADFGYLD EQ  .    .   .     .   0.01965 
 21 ADSRGYLD EQ  .    .   .     .   41.300  
 22 ADNYLD  EQ  .    .   .     .   45.571  
 23 ADDSYLD EQ  .    .   .     .   40.320  
 24 ADFOYLD EQ  .    .   .     .   40.320  
 25 RFCAP  BS  23700.0  1300.0   NONE   25000.0 .  
 26 FGRFYLD EQ  .    .   .     .   0.01965  
 27 RFRFGYLD EQ  .    .   .     .   48.440  
 28 CCCAP  UL  30000.0  .     NONE  30000.0 5.274  
 29 CCFGYLD EQ  .    .   .     .   0.01965  
 30 CCGYLD  EQ  .    .   .     .   45.5560  
 31 CCFOYLD EQ  .    .   .     .   40.3200  
 32 SRGSPLIT EQ  .    .   .     .   41.3000  
 33 SRNSPLIT EQ  .    .   .     .   45.5708  
34 SRDSSPLT EQ  .    .   .     .   40.320  
35  SRFOSPLT EQ  .    .   .     .   40.320  
36 RFGSPLIT EQ  .    .   .     .   48.440  
37 CCGSPLIT EQ  .    .   .     .   45.556  
38 CCFOSPLT EQ  .    .   .     .   40.320 
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Table 3-12(b) MPSX Output for Optimal Solution, Section 2 - Columns 
	 	 	 	 	 	  
NUMBER COLUMN  AT ACTIVITY INPUT  LOWER  UPPER  REDUCED     
            COST  LIMIT  LIMIT  COST 
 39  CRUDE  BS  100000.0  -33.00   .  NONE  .  
 40  FGAD   BS  3542000.0  0.01965   . NONE  .  
 41  SRG   BS  27000.0  .    .  NONE  .  
 42  SRN   BS  23700.0  .    .  NONE  .   
 43  SRDS   BS  8700.0   .     .  NONE  .  
 44  SRFO   BS  37200.0  .    .  NONE  .  
 46  FGRF   BS  761190.0  0.01965   . NONE  . 
 47  RFG   BS  21993.6  .    .  NONE  .  
 48  SRDSCC  LL  .    -2.20   .  NONE  -5.354  
 49  SRFOCC  BS  30000.0  -2.20   .  NONE  .  
 50  FGCC   BS  11592000.0 0.01965  .  NONE  .  
 51  CCG   BS  20640.0  .    .  NONE  .  
 52  CCFO   BS  6591.0   .    .  NONE  .  
 53  SRGPG  BS  13852.0  .    .  NONE  .  
 54  RFGPG  BS  17240.0  .    .  NONE  .  
 55  SRNPG  LL  .    .    .  NONE  -8.051  
 56  CCGPG  BS  16021.1  .    .  NONE  .  
 57  PG    BS  47113.2  45.36    .  NONE  .  
 58  SRGRG  BS  13148.0  .    .  NONE  .  
 59  RFGRG  BS  4753.6   .    .  NONE  .  
 60  SRNRG  LL  .    .    .  NONE  -8.051  
 61  CCGRG  BS  4618.8   .    .  NONE  .  
 62  RG    BS  22520.4  43.68    .  NONE  .  
 63  SRNDF  LL  .    .    .  NONE  -5.251  
 64  CCFODF  BS  3263.0   .    .  NONE  .  
 65  SRDSDF  BS  8700.0   .    .  NONE  .  
 66  SRFODF  BS   528.0   .    .  NONE  .  
 67  DF    BS  12491.0   40.32   .  NONE  .  
 68  CCFOFO  BS  3328.0   .    .  NONE  .  
 69  SRDSFO  LL   .     .    .  NONE  .  
 70  SRFOFO  BS  6672.0   .    .  NONE  .  
 71  FO    BS  10000.0  13.14   .  NONE  . 
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Sensitivity Analysis 
 
 Having obtained the optimal solution for a linear programming problem, it would be 
desirable to know how much the cost coefficients could change, for example, before it is necessary 
to resolve the problem.  In fact, there are five areas that should be examined for their effect on the 
optimal solution.  These are:  
 

1. Changes in the right-hand side of the constraint equations, bi.  
2. Changes in the coefficients of the objective function, cj.  
3. Changes in the coefficients of the constraint equations, aij.  
4. Addition of new variables.  
5. Addition of more constraint equations.  

 
 Changes in the right-hand side of the constraint equations correspond to changes in the 
maximum capacity of a process unit or the availability of a raw material, for example.  Changes in 
the coefficients of the objective function correspond to changes of the cost or the sale price of the 
raw materials and products.  Changes in the coefficients of the constraint equations correspond to 
changes in volumetric yields of a process.  Addition of new variables and constraint equations 
correspond to the addition of new process units in the plant.  It is valuable to know how these 
various coefficients and parameters can vary without changing the optimal solution, and this may 
reduce the number of times the linear programming problem must be solved. 
 
 Prior to doing this post-optimal analysis some preliminary mathematical expressions must 
be developed for the analysis of the effect of the above five areas on the optimal solution.  These 
are the inverse of the optimal basis and the Lagrange multipliers. To obtain the matrix called the 
inverse of the optimal basis, A*-1, consider that the optimal basis has been found by the previously 
described Simplex Method.  There are m constraint equations and n variables as given by Equations 
3-1a, b and c.  For convenience, the nonzero variables in the optimal basis have been rearranged 
to go from 1 to m, (x1*, x2*..., xm*, 0, ..., 0); and there are (n - m) variables not in the basis whose 
value is zero.  The optimal solution to this linear programming problem is indicated below where 
x* contains only the m nonzero basis variables.  
  
    p* = cT x*  =  opt  cT x  (3-16) 

x 

and 
 
    A* x* = b     (3-17) 
 
To solve for x*, both sides of the above equation are multiplied by the inverse of the optimal basis, 
A*-1 whose elements are βij and obtain:  
 
    x* = A*-1b     (3-18) 
 
It should be noted that A*-1 may be obtained from the last step of the Simplex Method if all of the 
constraint equations required slack variables.  If not, then it has to be obtained from the original 
formulation of the problem using the optimal basis found from the Simplex Method. 
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 The linear programming problem could be solved by the classical method of Lagrange 
multipliers.  However, the Simplex Method gives a systematic procedure for locating the optimal 
basis.  Having located the optimal basis by the Simplex Method, the Lagrange multiplier 
formulation and the inverse of the optimal basis will be used to determine the effect of change in 
the right-hand side on the optimal solution.  Consequently, it is necessary to compute the values 
of the Lagrange multipliers as follows.  Multiplying each constraint Equation, (3-1b), by the 
Lagrange multiplier λi and adding to the objective function Equation (3-1a), gives the following 
equation. 
 

     (3-19) 

 
 
where x1 to xm are positive numbers i.e. values of the variables in the basis, and xm+1 to xn are zero, 
i.e. values of the variables that are not in the basis.  
 
 To solve this problem by classical methods the partial derivatives of p with respect to the 
independent variables and the Lagrange multipliers would be set equal to zero.  Taking the partial 
derivatives of p with respect to the Lagrange multipliers just gives the constraint equations, and 
taking the partial derivatives with respect to the independent variables, xj* (j = 1, 2, ...m) gives:  
      

      for j = 1, 2, …, m  (3-20) 

 
and xj* for j = m + 1, ... n is zero, since x* is the optimal solution.  
 
 The values of the Lagrange multipliers are obtained from the solution of Equation (3-20).  
Written in matrix notation, Equation (3-20) is:  
 

  c + A*Tλ = 0      (3-21) 

where A*T is the transpose of the matrix A*. 
 

Using the matrix identity [A*T]-1 = [A*-1]T and solving for the Lagrange multipliers gives:  
 

  λ = -[A*-1]T c     (3-22) 
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In terms of the elements of the inverse of the optimal basis βij, Equation (3-22) can be written as:  

              

         (3-23) 

     
With this as background, the effect of the five changes on the optimal solution can be 

determined.  The inverse of the optimal basis A*-1 and the Lagrange multipliers will be used to 
evaluate these changes.  The following example illustrates the computation of the inverse of the 
optimal basis and the Lagrange multipliers.  
 

Example 3-6 

Solve the following problem by the Simplex Method and compute the inverse of the optimal basis 
and the Lagrange multipliers:  
 

 maximize: 2x1 +   x2 + x3   

subject to:   x1 +   x2 + x3 < 10  

  x1 + 5x2 + x3 > 20  

Adding slack variables gives:  

 maximize:     2x1 +   x2 + x3   =  p  

subject to: x1 +   x2 + x3 + x4  = 10  

x1 + 5x2 + x3          - x5 = 20  

An initially feasible basis is not available, and either artificial variables or algebraic manipulations 
must be performed to obtain one.  Algebraic manipulations are used to have x1 and x2 be the 
variables in the basis.  The result is: 
 

              - x3 - 9/4x4 -  1/4x5    = p - 17½  p  = 17½ 

x1  + x3 + 5/4x4 -  1/4x5    =   7½   x1 =  7½ 

      + x2              - 1/4x4 -  1/4x5    =   2½   x2 =  2½ 

x3 =  0 

x4 =  0 

x5 =  0 

λi = − βijc j for i =  1,2 ..., m
j=1

m

∑
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This is the optimum since all of the coefficients of the non-basic variables in the objective function 
are negative.  Knowing the optimal solution, the original problem now takes the form:  
 

maximize:     2x1 +   x2 = 17½ 

subject to: x1 +   x2 = 10   

 x1 + 5x2 = 20 

The inverse of the optimal basis is computed using the co-factor method. 

  

where ║A*ji║ = ║A*ij║T, and ║A*ij║ are the co-factors of the matrix A*.(8)   
 

  

 
 

 
 

  
The Lagrange multipliers are computed using Equation (3-22) 
 
 λ = -[A*-1]T c  
 

 
 

or  
 λ1 = -9/4 and λ2 =  ¼  
 

Changes in the Right-Hand Side of the Constraint Equations:  Changes in the right-
hand side of the constraint equations, i.e. changes in the bi's, will cause changes in the values of 
the variables in the optimal solution, the xj's.  For an optimal solution to remain optimal, the xj's 
cannot become negative. Equation (3-18) will be used to evaluate changes in the xj's caused by 
changes in the bi's.  The jth component of Equation 3-18 is used. 

 

     (3-24) 

 
For a change in bi of an amount Δbi, the new value of xj*, called x*j,new is:  
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and 

    (3-25)  

       

For the optimal solution x* to remain optimal the values of xj,new must not become negative.  The 
problem must be resolved if any of the xj,new's becomes negative. 
  

The change in the value of the objective function for changes in the bi's, is computed using 
Equation (3-19).  Since the left-hand side of Equation 3-19 is zero at the optimum, it can be written 
as: 

 

        (3-26) 

 
Using the same procedure for the change Δbi, the change in the value of the objective function is:  

 

      (3-27) 

     
It is from this equation that the Lagrange multipliers receive the name shadow prices since they 
have dimensions of dollars per unit and are used to compute the new value of the objective function 
from changes in the bi's.  This is called a marginal cost calculation.  
 
 Generally, in large linear programming computer programs part of the computations 
includes the calculation of x*j,new and p*new for upper and lower limits on the bi's.  Also, values of 
the Δbi's can be computed that will give the largest possible change in the xj*'s, i.e. xj,new = 0.  
Simultaneous changes in the right-hand side of the constraint equations can be performed using 
the 100% rule, and this procedure is described by Bradley et al (19).  
 
Example 4-7 
 
For the problem given in Example 4-6, find the new optimal solution for Δb1 = -5 without resolving 
the problem.  Using Equation (3-25) to compute the changes in the xi's gives: 
 
   x1,new = x1 +  β11 Δb1 + β12 Δb2 

   x2,new = x2 +  β21 Δb1 + β22 Δb2 
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Substituting in the values for Δb1 = -5 and Δb2 = 0 gives  

   x1,new = 7½ + 5/4(-5) = 5/4 

   x2,new = 2½ + (-¼) (-5) = 15/4 

Using Equation (4-27) the change in the objective function is computed as:  

p*new = p* - [λ1 Δb1 + λ2 Δb2] = 17½ - (-9/4) (-5)  

p*new = 25/4 = 6¼ 

The optimal solution remains optimal, but the profit decreases from 17 ½ to 6¼. 

 Changes in the right-hand side of the constraint equations are part of the sensitivity analysis 
of the MPSX program.  In Table 3-12(a) the smallest and largest values of the right-hand side of 
the constraint equations are given for the optimal solution to remain optimal as LOWER LIMIT 
and UPPER LIMIT.  Also, the Lagrange multipliers were computed, and these are called the 
DUAL ACTIVITY in the MPSX nomenclature of Table 3-12(a).  In this table NONE indicates 
that there is no bound, and a dot indicates that the value was zero.  Correspondingly, in Table 3-
12(b) the upper and lower limits on the variables are given.  In this case the dot indicates that the 
lower bound was zero, and NONE indicates that there was no upper bound on the variable because 
BOUNDS was not used.  

 
Changes in the Coefficients of the Objective Function:  It is necessary to consider the 

effect on the optimal solution of changes in the cost coefficients of the variables in the basis and 
those not in the basis also.  Referring to Equation (3-19), the coefficients of the variables that are 
not in the basis, i.e., xm+1, ..., xn must remain negative for maximization. 

 

    (3-28) 

 
If a coefficient becomes positive from a change in the cost coefficients, it would be profitable to 
have that variable enter the basis.  
 
 The values of the Lagrange multipliers are affected by changes in the cost coefficients of 
the variables in the basis, since they are related by Equation (3-23).  The term in the brackets in 
Equation (3-28) is named the reduced cost (19), and it is convenient to define this term as c'j to 
obtain the equation that accounts for the effect of changes in cost coefficients on the optimal 
solution. 
 

   (3-29) 

 
where c'j must remain negative for the optimal solution to remain optimal for maximizing.  
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 The Lagrange multipliers, λi's, are eliminated from Equation (3-29) by substituting 
Equation (4-23) to give:  

     

 
or 
    

    (3-30) 

 
For a change, Δcj, in the non-basic variable cost coefficient, cj, and for a change, Δck, in the basic 
variables cost coefficient ck, it can be shown that the following equation holds: 
 
 

   (3-31) 

 
When maximizing, the new coefficients must remain negative for the variables not in the basis to 
have the optimal solution remain optimal, i.e.  
     
     c'j new < 0      (3-32)  
 
If Equation (3-32) does not hold then a new optimal solution must be obtained by solving the linear 
programming problem with the new values of the cost coefficients.  
 
 If the optimal solution remains optimal, the new value of the objective function can be 
computed with the following equation: 
 

       (3-33) 

 
 If the problem must be resolved, it is usually convenient to introduce an artificial variable 
and proceed from this point to the new optimal solution.  Large linear programming codes usually 
have this provision.  Also, they can calculate a range of values of the cost coefficients where the 
optimal solution remains optimal and the corresponding effect on the objective function.  The 
procedure used is called the 100% rule and is described by Bradley, et al. (19).  
 
Example 3-8 

For the problem given in Example 3-6 compute the effect of changing the cost coefficient c1 from 
2 to 3 and c3 from 1 to 4, i.e. Δc1 = 1 and Δc3 = 3.  Using Equation 3-31 produces the following 
results for j = 3, 4, 5 (since Δc2 = 0). 
 

!cj = cj − aij βkick for j=m+1,…,n
k=1

m

∑
i=1

m

∑

!cj = cj − aijβkick for j=m+1,…,n
k=1

m

∑
i=1

m

∑

!cj,new = !c +Δcj − Δck aijβki for j=m+1,…,n
k=1

m

∑
k=1

m

∑

p*new = p*+ xkΔck
k=1

m

∑
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    c'3,new = c'3 + Δc1[a13β11 + a23β12] 

substituting 

    c'3,new = -1 + 3 - (1)[(1)(5/4) + (1)(-¼)] = 1 

    c'4,new = c'4 + Δc4 - Δc1[a14β11 + a24β12]  

substituting 

    c'4,new = -9/4 + 0 - (1)[(1)(5/4) + (0)(-¼)] = -13/4 

    c'5,new = c'5 + Δc5 - Δc1[a15β11 + a25β12] 

substituting 

    c'5,new = -¼ + 0 - (1)[(0)(5/4) + (-1)(-¼)] = -½ 

An improvement in the objective function can be obtained, for c'3,new is greater than zero.  
Increasing x3 from zero to a positive number will increase the value of the objective function.  
However, the problem will have to be resolved.  
 

In the MPSX program, the RANGE command and the parametrics are used to find the 
range over which the variables, right-hand-sides and the coefficients of the objective function and 
constraints, may be varied without changing the basis for the optimal solution.  Output from the 
RANGE command consists of four sections:  sections 1 and 2 for rows and columns at their limit 
levels, and sections 3 and 4 for rows and columns at an intermediate level (in the basis) which will 
be described here.  Further information is given in references (12, 15 and 16).  

 
 In Table 3-13 the RANGE output is shown for constraint rows at upper and lower limit 
levels.  The first four columns have the same meaning as in the output from SOLUTION.  The 
next four have two entries for each row.  LOWER ACTIVITY and UPPER ACTIVITY are the 
lower and upper bounds on the range of values that the row activity (right-hand side) may have.  
Since the slack variable for the row is zero at a limit level, the upper and lower activities are 
numerically equal to the bounds of the range that the right-hand sides may have.  The two UNIT 
COST entries are the changes in the objective function per unit change of activity when moving 
from the solution activity to either the upper or lower bound.  The column labeled LIMITING 
PROCESS contains the name of the row or column that will leave the basis if the activity bounds 
are violated.  The status column, AT, indicates the status of the leaving row or column.  For 
example, in line 15 of Table 3-13 the row FOMIN is at its lower limit, its activity value is 10,000, 
and the right-hand side may take on values between 5,652.8 and 12,252.2 without changing the 
basis.  If FOMIN exceeds 12,252.2, then SRFODF would leave the basis.  If FOMIN goes below 
5,652.8, then CCFODF would leave the basis. The cost associated with a change in FOMIN is 
$27.18/bbl with profit decreasing for an increase in FOMIN. 
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Table 3·13. MPS Output, RANGE: Rows at Limit Level 
Section 1 - rows at limit level 
 

 Lower Activity   Unit Cost  Limiting AT 
Number   Row  AT  Activity Upper Activity    Unit Cost Process AT 
4  PGBLEND  EQ  .  -1530.74  19.320  SRGPG  LL 

807.77   -19.320  RGMIN LL 
5  PGOCANE  LL .  -75122 38  0.28   RGMIN  LL 

142358.38  -0.28   SRGPG  LL 
8  RGBLEND  EQ .   -157.39  19.320  CCGRG LL 

184.70  -19.320  RFGRG  LL 
9  RGOCTAN LL  .  -18739.35  0.280   RFGRG  LL 

17326.68  -0.280   CCGRG  LL 
10  RGVAPP  UL  .  -16460.63  .  RFGRG  LL 

9533.63  .  CCGRG  LL 
12  DFBLEND  EQ  .  -4091. 76  40.320  CCFODF  LL 

541.56  -40.320  DFDENS  UL 
14  DFSULFUR  UL .  -331.08  .  SRFODF  LI. 

2045.89  .  CCFODF  LL 
15  FOMIN  LL  10000.0  5652.8  27.180  SRFODF  LL 

12252.2  -27.180  SRFODF  LL 
16  FOBLEND  EQ  .  -4347.24  40.320  CCFOFO  LL 

1941.99  -40.320  FODENS  UL 
19  ADCAP  UL  100000.0  94572.99  -8.154   DFMIN  LL 

105485.23  8.154   RFCAP  UL 
20  ADFGYLD EQ  .  -INFINITY  0.01965  NONE 

3541999.0  -.01965  FGAD   LL 
21  ADSRGYLD  EQ  .  -26197.55  41.300  PGMIN UL 

5180.85  -41.300  RGMIN LL 
22  ADNYLD EQ .   -1300.0  45.570  RFCAP  LL 

13394.25  -45.570 RFGPG  LL 
23  ADDSYLD  EQ .   -12733.73  40.320  SRFODF  LL 

2490.99  -40.320  DFMIN  LL 
24  ADFOYLD  EQ .  -4347.24  40.320  CCFOFO LL 

.  2252.22  -40.320  SRFODF  LL 
26  FGRYLD EQ .  -INFINITY  0.01965  NONE 

3761190.0  -.01965 FGRF  LL 
27  RFRFGYLD  EQ  .  -6829.31  48.440  RGMIN  LL 

12429.87  -48.440  RFGFG  LL 
28  CCAP   UL  30000,00  25926.81  -5.274   CCFOFO LL 

32886.36  5.274   SRFODF  LL 
29  CCFGYLD EQ .  -INFlNlTY   0.01965  NONE 

11591992.0  -.01965  FGCCF LL



 104 

Table 3·13. Continued 
 Lower Activity   Unit Cost  Limiting AT 

Number   Row  AT  Activity Upper Activity    Unit Cost Process AT 
30  CCGYLD EQ .   -107317 .69  45.556  RGMIN LL 

15646.77  -45.556  CCGPG LL 
31  CCFGYL EQ    -28457.97  40.320  SRFDFO  LL 

2252.22 - 40.320  SRFODF  LL 
32  SRGSPLIT EQ .   -26197.55  `41.300 PGIMIN LL 

5180.85  -41.300  RGMIN  LL 
33  SRNSPLIT  EQ .  -1300.0  45.570  RFCAP  UL 

13394.25  -45.570  RFGFG  LL 
34  SRDSSPLT  EQ .  12733.73  40.320  SRFJDF  LL 

2490.9  -40.320  DFMIN  LL 
35  SRFOSPLT  EQ .  -4347.24  40.320  CCFOFO  LL 

2252.22  -40.320  SRFODF  LL 
36  RFGSPLIT  EQ .  -6829.87  48.440  RGIIN  LL 

12429.87  -48.440  RFGFG  LL 
37  CCGSPLIT EQ .  -107317.69  45.566  RGMIN  LL 

15646.77  -45.566  CCGPG LL 
38 CCFOSPLT EQ .  -28457.97  40.320  SRFDFO  LL 

2252.22  -40.320  SREODF  LL 
 
Similar information is provided in Table 3-14 about the range over which the nonbasis 

activities (variables) at upper or lower limits may be varied without forcing the row or column in 
LIMITING PROCESS out of the basis.   An additional column is included in the table, LOWER 
COST/UPPER COST to show the highest and lowest cost coefficients at which the variable will 
remain in the basis.  If the objective function cost coefficient goes to the LOWER COST, the 
activity will increase to UPPER ACTIVITY.  Similarly, if its cost goes below UPPER COST, the 
activity will be decreased to LOWER ACTIVITY.  

 
 The third section of output from the range study is given in Table 3-15.  It contains 
information about constraints that are not at their limits and, therefore, are in the basis of the 
optimal solution.  The column headings have the same meaning as the headings for section 1 except 
that here the variable listed under LIMITING PROCESS will enter the basis if the bounds are 
exceeded.   
 
 The fourth section, shown in Table 3-16, gives the RANGE analysis of the variables listed 
under the columns in the basis.  As in Table 3-15 the variable listed under LIMITING PROCESS 
will enter the basis when activity is forced beyond the upper or lower activity bounds.   
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 Table 3-14_ MPS Output, RANGE: Columns at Limit Level 
 
SECTION 2 – Columns at Limit Level 
    Input Lower Activity   Unit Cost    Lower Cost Limiting   AT 
Number   Column AT  Cost Upper Activity    Unit Cost    Upper Cost  Process    AT 
 
48  SRDOCC  LL -2.20  -1964.99   5.353   -Infinity      SRFODF  LL 

 4550.96  -5.353   3.128         CCFOFO LL 
55  SRNPG  LL  . -1300.00   8.051   -Infinity      RFCAP    UL 

 3725.88  -8.051   8.046         SRGPG    LL 
60  SRNRG LL  .   -615.85   8.051   -Infinity      RFGRG    LL 

   543.39  -8.051   8.046         CCGRG    LL 
63  SRNOF  LL  . -1300.00   5.250   -Infinity      RFCAP     UL 

  9428.02 -5.250   5.251         CCFODF   LL 
69  SRDSFO  LL .  -1913.74   .  -Infinity      SRFODF   UL 

  4596.20   .  0.000         CCFOFO   LL 
 
 
Table 3-15   MPS Output, RANGE:  Rows at Intermediate Level 

Section 3 - rows at intermediate level 
    Slack Lower Activity   Unit Cost  Limiting AT 

Number   Row   AT  Activity  Activity  Upper Activity    Unit Cost Process AT 
2   CRDAVAIL BS  100000.0   10000.0        94572.98    -8.154 ADCAP UL  
                          100000.0 -INFINITY   NONE  
3 PGMIN  BS    47113.0    -37113.2      23655.1  -1.278 SRNPG LL 
                          47113.2 -INFINITY   NONE  
6 PGVAPP  BS  -188607.2   188607.21  -188607.16 -INFINITY NONE  
                          -172146.52  .  RGVAPP UL 
7 RGMIN  BS 22520.4     -12520.4      21167.53  -32.710 ADCAP LL     
                            46246.79  -1.264 SRNPG UL 
11 DFMIN  BS 12490.9  -2490.9      9592.13  -17.765 ADCAP UL 
                           21919.02  -5.251 SRNDF LL 
3 DFDENS BS   -165458.8 165458.8  -165775.57  .  DFSULFUR UL 
                          -153666.96  .  SRDSFO LL 
17 FODENS BS   -571996.8 571966.8   -583788.53  .  SRDSFO LL     
                           -571679.93  .  DFSULFUR UL 
18 FOSULFUR BS  -22286.7 22286.7     -27917.23  -10.872 FOMIN LL     
                           -21955.59  .  DFSULFUR UL 
25 RFCAP  BS 23700.0  1300.0        14271.68  -5.251 SRNDF UL   
                            23700.00 -INFINITY   NONE 
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The information of greatest interest here are the entries for columns with coefficients in the 
objective function. These are: CRUDE (39), FGAD(40), SRNRF(45), FGRF(46), SRFOCC(49), 
FCCC(50), PG(57), RG(62), DF(67), and FO(71).  Examining the first row in Table 3-16, one 
finds that if the cost coefficient becomes -41.15, the activity (crude flow rate) would be reduced 
from 100,000 to 94,572.98.  Consequently, if the cost of crude oil is increased to $40.09/bbl 
(operating cost is $1.00/bbl) the refinery should reduce its throughput by only 5.2%.  Also notice 
that the lower cost for premium gasoline (PG) is 44.082 while the input cost is 45.35.  If the bulk 
sale price of premium gasoline were to drop to $44.08/bbl., it would be profitable for the refinery 
to produce 23,661 bbl/day, a drop of almost 50% from the optimum value of 47,111bbl/day 
currently produced.  A similar analysis for fuel oil (FO) indicates that it will probably never be 
profitable to produce fuel oil since the sale price would have to increase from $13.14/bbl to 
$40.32/bbl before production should be increased above the minimum. 
 
 Changes in Coefficients of the Constraint Equations:  Referring to Equation 3-29 it is 
seen that changes in the aij's for the non-basic variables will cause changes in c'j.  For the optimal 
solution to remain optimal c'j < 0 when maximizing; and if not, the problem must be resolved.  To 
evaluate the changes in the coefficients of the constraint equations, aij, several pages of algebraic 
manipulations are required.  This development is similar to the ones given here for the bi's and cj's, 
and is discussed in detail by Garvin (3) and Gass (4) along with the subject of parametric 
programming, i.e., evaluating a set of ranges on the aij's, bi's and cj's where the optimal solution 
remains optimal.  Due to space limitations these results will not be given here.  Also, the MPSX 
code has the capability of making these evaluations as previously mentioned. 
 
 Addition of New Variables:  The effect of adding new variables can be determined by 
modifying Equation 4-19.  If k new variables are added to the problem then k additional terms will 
be added to Equation 4-19, and the coefficient of the kth term is: 
        

        (3-34) 

 
       
Each of these k terms can be computed with the available information.  If all of these are less than 
zero, the original optimal solution remains at the maximum.  If Equation 3-34 is greater than zero, 
the solution can be improved; and the problem has to be resolved.  Artificial variables are normally 
used to evaluate additional variables to obtain new optimal solution.   
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Table 3-16 MPS Output, RANGE:  Columns at Intermediate Levels  
 
Section 4 – columns at intermediate level  

    Input  Lower Activity  Lower Cost  Limiting   
Number   Row   AT  Activity   Cost   Upper Activity   Unit Cost Upper Cost    Process  AT 
39 CRUDE BS 100000.0 -33.0   94573.0     -8.154  -41.154         ADCAP  UL  
        100000.0       -INFINITY  INFINITY       NONE  
40  FGAD BS 3541999.0  0.01965 3349774.0   -.2302  -0.210         ADCAP  UL  
        3541999.0     -INFINITY  INFINITY   NONE  
41  SRG BS    27000.0  . 25534.7          -30.200  -30.201        ADCAP   UL  
        27000.0        -INFINITY INFINITY   NONE  
42  SRN BS    23699.9  . 22413.8        -34.405  -34.405        ADCAP   UL  
        23699.9        -INFINITY INFINITY   NONE  
43  SRDS BS    8699.9  .  8227.8       -93.726  -93.726         ADCAP   UL  
         8699.9        -INFINITY INFINITY   NONE  
44  SRFO BS    37199.9    . 35181.1        -21.919  -21.919         ADCAP   UL  
        37199.9        -INFINITY INFINITY   NONE  
45  SRNRF BS     23699.9 -2.50  14271.9         -5.251  -7.750        SRNDF     UL  
        23699.9        -INFINITY INFINITY   NONE  
46  FGRF BS 3761190.0  0.01965  2264964.1-.0331  -.0134         SRNDF    LL  
        3761190.       –INFINITY    INFINITY   NONE  
 47  RFG BS   21993.6  . 13244.4        -5.658   -5.658        SRNDF     UL  
        21993.6        -INFINITY INFINITY   NONE  
49  SRFOCC  BS 30000.0   -2.20 25926.8        -5.274   -7.474         CCCAP    UL  
        30000.0         -INFINITY INFINITY   NONE  
50  FGCC BS 11591992.0  0.01965  10018114.0  -.01365  0.006        CCCAP     UL  
        11591992.0    -INFINITY INFINITY  NONE   
51  CCG BS   20640.0  . 17837.6         -7.665  -7.665        CCCAP     UL  
        20640.0         -INFINITY INFINITY   NONE  
52  CCFO BS     6590.9  .  5696.1        -24.003  -24.003        CCCAP     UL  
         6591.0 -INFINITY INFINITY NONE 
 53 SRGPG   BS 13852.0      .    10510.6 -1.309  -1.309         SRNRG    LL  
         17073.2    .  .         RGVAPP    UL  
54 RFGPG    BS 17240.0      .     12541.4 -0.931  -0.931         SRNRG    LL  
         21993.6    .  .         RGVAPP    UL  
56 CCGPG   BS 16021.2      .     8046.4    .  .         RGVAPP    UL  
        20640.0 -0.947  0.947         SRNRG    LL  
57 PG     BS 47113.2   45.36   23655.1 -1.279  44.081         SRNPG    LL  
        47113.2 -INFINITY INFINITY NONE  
58 SRGRG   BS 13148.0      .     9926.8 .  .         RGVAPP    UL  
        16489.4 -1.309  1.309         SRNRG    LL  
59 RFGRG   BS 4753.6        .    -4796.2 .  .         RGVAPP    UL  
         8947.9 -1.043  1.043         SRNRG    LL  
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Table 3-16 MPS Output, RANGE:  Columns at Intermediate Levels  
 
Section 4 – columns at intermediate level  

    Input  Lower Activity  Lower Cost   Limiting   
Number   Row   AT  Activity   Cost   Upper Activity   Unit Cost Upper Cost    Process  AT 
61 CCGRG  BS 4618.8         .   -12328.6        -0.947 0.947 SRNRG LL  
        12593.6         .  . RGVAPP UL  
62 RG     BS 22520.4   43.68   21167.5           -32.710     10.970 ADCAP LL  
         46246.8        -1.264 44.944 SRNPG LL  
64 CCFODF  BS   3263.0     .         -1372.7        -15.172 15.172 SRNDF LL  
         3791.0                  .         -0.000 DFSULFUR UL  
65 SRDSDF   BS  8700.0      .     4103.8          .  0.000 SRDSFO LL  
         8700.0       -INFINITY INFINITY  NONE  
66 SRFODF BS    528.0      .    -2800.0         .  . DFSULFUR UL  
         1796.2         .  -0.000 SRDSFO LL  
67 DF      BS 12491.0    40.32   10000.0       -17.7652     2.555 ADCAP UL  
          21919.0       -5.250 45.570 SRNDF LL  
68 CCFOFO  BS 3328.0       .          2800.0         .  0.000 DFSULFUR UL  
          6591.0        5.172 15.172 SRNDF LL  
70 SRFOFO  BS 6672.0       .      5403.8         .  . SRDSFO LL  
         7200.0         .  . DFSULFUR UL  
 71 FO      BS 10000.0  13.14   10000.0       -INFINITY -INFINITY   NONE  
         12252.2     -27.180 40.320 FOMIN LL  
 
 
 Addition of More Constraint Equations:  For the addition of more constraint equations 
the procedure is to add artificial variables and proceed with the solution to the optimum.  The 
artificial variables supply the canonical form for the solution.   The following example shows the 
effect of adding an additional independent variable and an additional constraint equation to a linear 
programming problem to illustrate the application of the methods described above.  
 
Example 3-9 
 
Solve the linear programming problem using the Simplex Method 

 
minimize:    x1  -  3x2  

 
subject to:  3x1  -    x2 <  7    

 
-2x1 +  4x2 < 12  
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Introduce slack variables x3 and x4 for an initially feasible basis and ignore the terms with x5 in 
parentheses for now.  This gives:  

   
  x1 -  3x2        (+ 2x5)   = c c  =  0  
  
3x1  -   x2 + x3          (+ 2x5)   = 7   x3 =  7  
 
-2x1 + 4x2       + x4          = 12   x4 = 12 

    
          x1 =  0 
    
          x2 =  0 
 
Applying the Simplex Method x2 enters and x4 leaves the basis.  Performing the algebraic 
manipulations gives: 
   

- 0.5x1    +  0.75x4  (+ 2x5) = c + 9  c  = -9   
   

  2.5x1      + x3  +  0.25x4  (+ 2x5) = 10  x3 = 10  
   

- 0.5x1  + x2   +  0.25x4  = 3  x2 =  3  
   
         x1 =  0  
   
         x4 =  0  
 
Applying the Simplex Method x1 enters and x3 leaves the basis giving the following results:  
    

0.2x3 + 0.8x4 (+ 2.4x5) = c + 11 c  = -11  
  

 x1 +  0.4x3 + 0.1x4  (- 0.8x5) = 4  x1 =   4  
   

x2 + 0.2x3 + 0.3x4 (+ 0.4x5) = 5  x2 =   5  
   
        x3 =   0  
   
        x4 =   0  
 
The optimal solution has been obtained since all of the coefficients of the variables in the objective 
function (not in the basis) are positive.  
 
 We compute the inverse of the optimal basis A*-1 and the Lagrange multipliers, having 
obtained the optimal solution as follows:  
 



 110 

    

 
For Lagrange multipliers Equation 3-22 is used: 
 
     λ = -[A*-1]T c  
 
and substituting gives 
 

    

 
If the first constraint equation is changed as follows by adding another variable x5:  
 
    3x1 - x2 + 2x5 < 7  
 
and the objective function is changed by including x5 as shown below:  
       

x1 - 3x2 + 2x5  
 
Determine how this addition of a new variable affects the optimal solution found previously.  The 
linear programming problem now has the following form:   

 
x1  - 3x2 + 2x5       =  c  

             
          3x1  -   x2 + 2x5 + x3         =  7  
          
         -2x1 + 4x2                 + x4   = 12  

 
To determine if the optimal solution remains optimal, Equation 3-34 is used.  For this problem n 
= 4,  k = 1  and  m = 2,  and Equation 3-34 has the form:  
      

[c5 + a1,5 λ1 + a2,5 λ2] 
substituting gives:  
 
     [2 + 2(1/5) + 0(4/5)] = 2.4 > 0 
 
The optimal solution remains optimal since Equation 3-34 is positive for this case, and it is not 
necessary to resolve the problem.  x5 is not in the basis and has a value of zero.  
 
The terms in parenthesis show the solution with the additional variable included.  As can be seen 
the coefficient at the final step is the same as computed using Equation 3-34.  
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Find the new optimal solution if the following constraint equation is added to the problem  
     

-4x1 + 3x2 + 8x5 + x6  = 10  
 
The constraint equation is added to the optimal solution set so the problem will not have to be 
completely solved and is:  
     

0.2x3 + 0.8x4    + 2.4x5  = c + 11   
 
x1 +    0.4x3 + 0.1x4   -  0.8x5  = 4  

               
       x2  +  0.2x3 + 0.3x4  +  0.4x5  = 5   
         

       - 4x1 +       3x2                             +     8x5 + x6 = 10  
 
x6 is used as the variable in the basis from the additional constraint equation.   x1 and x2 are 
eliminated from the added constraint equation by algebraic manipulation and gives:  
      

   0.2x3 + 0.8x4 + 2.4x5  =  c + 11 c  = -11  
   

x1 + 0.4x3 + 0.1x4 - 0.8x5  =  4  x1 =  4  
   

      x2 + 0.2x3 + 0.3x4 + 0.4x5 =  5  x2 =  5   
   
           x3 -  0.5x4  +  10x5 + x6 =  11  x6 = 11  
   
         x4 =  0  
   
         x5 =  0  
  
The new optimal solution has been found since all of the coefficients in the objective function are 
positive.  Artificial variables would normally have been used, especially in a computer program, 
to give a feasible basis and proceed to the optimum.  
 
Closure 
 
 In this chapter the study of linear programming was taken through the use of large computer 
codes to solve industrial problems.  Sufficient background was provided to be able to formulate 
and solve linear programming problems for an industrial plant using one of the large linear 
programming codes and to interpret the optimal solution and associated sensitivity analysis.  In 
addition, this background should provide the ability for independent reading on extensions of the 
subject.  
 
 The mathematical structure of the linear programming problem was introduced by solving 
a simple problem graphically.  The solution was found to be at the intersection of constraint 
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equations.  The Simplex Algorithm was then presented which showed the procedure of moving 
from one intersection of constraint equations (basic feasible solution) to another and having the 
objective function improve at each step until the optimum was reached.  Having seen the Simplex 
Method in operation, the important theorems of linear programming were discussed which 
guaranteed that the global optimum would be found for the linear objective function and linear 
constraints.  Then methods were presented which illustrated how a process flow diagram and 
associated information could be converted to a linear programming problem to optimize an 
industrial process.  This was illustrated with a simple petroleum refinery example, and the solution 
was obtained using a large standard linear programming code, Mathematical Programming System 
Extended (MPSX), on an IBM 4341 computer.  The chapter was included with a discussion of 
post-optimal analysis procedures that evaluated the sensitivity of the solution to changes in 
important parameters of linear programming problem.  This sensitivity analysis was illustrated 
using simple examples and results from the solution of the simple refinery using the MPSX code.  
 
 A list of selected references is given at the end of the chapter for information beyond that 
presented here.  These texts include the following topics.  The Revised Simplex Method is a 
modification of the Simplex Method that permits a more accurate and rapid solution using digital 
computers.  The dual linear programming problem converts the original or primal problem into a 
corresponding dual problem that may be solved more readily than the original problem.  Parametric 
programming is an extension of sensitivity analysis where ranges on the parameters, aij's, bi's and 
cj's, are computed directly considering more than one parameter at a time.  Also, there are 
decomposition methods that take extremely large problems and separate or decomposes them into 
a series of smaller problems that can be solved with reasonable computer time and space.  In 
addition, special techniques have been developed for a class of transportation and network 
problems that facilitate their solution.  Linear programming has been extended to consider multiple 
conflicting criteria, i.e., more than one objective function, and this has been named goal 
programming.  An important extension of linear programming is the case where the variables can 
take on only integer values, and this has been named integer programming.  Moreover, linear 
programming and the theory of games have been interfaced to develop optimal strategies.  Finally, 
almost all large computers have one or more advanced linear programming codes capable of 
solving problems with thousands of constraints and thousands of variables.  It is very time 
consuming and tedious task to assemble and enter reliable data correctly in using these programs.  
These codes, e.g. MPSX, are very efficient and use sparse matrix inversion techniques, methods 
for dealing with ill-conditioned matrices, structural data formats and simplified input and output 
transformations.  Also, they usually incorporate post optimal ranging, generalized upper bounding 
and parametric programming (9,12).   Again, the topics mentioned above are discussed in the 
articles and books in the References and the Selected List of Texts at the end of the chapter.  
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Selected List of Texts on Linear Programming and Extensions 
 
Bazaraa, M. S., and J. J. Jarvis, Linear Programming and Network Flows John Wiley and Sons, 

Inc., New York (1977).  
Charnes, A. and W. W. Cooper, Management Models and Industrial Applications of Linear 
 Programming, Vol. 1 and 2, John Wiley and Sons, Inc., New York (1967).  
Garfinkel, R. S., and G. L. Nemhauser, Integer Programming, John Wley and Sons, Inc., New 

York (1972).  
Glicksman, A. M., An Introduction to Linear Programming and the Theory of Games, John Wiley 

and Sons, Inc., New York (1963).  
Greenberg, Harold, Integer Programming, Academic Press New York (1971). 
Hadley, G. H., Linear Programming, Addison-Wesley, Inc., Reading, Mass.  (1962)  
Land, A. H., and S. Powell, Fortran Codes for Mathematical Programming: Linear, Quadratic  

and Discrete, John Wiley and Sons, Inc. New York (1973).  
Lasdon, Leon, Optimization Theory for Large Systems, Macmillan and Co., New York (1970).  
Naylor, T. H., and E. T. Byrne, Linear Programming Methods and Cases, Wadsworth Publ. Co., 

Balmont, Calif. (1963).  
Orchard-Hays, Wm., Advanced Linear Programming Computing Techniques, McGraw-Hill Book 

Co., New York (1968).  
Papadimitriou, C. H. and Kenneth Steiglitz, Combinatorial Optimization: Algorithms and 
 Complexity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1982).  
Schrage, L., Linear Programming Models with LINDO, Scientific Press, Palo Alto, Calif. (1981). 
Taha, H. A., Integer Programming:  Theory, Applications and Computations, Academic Press, 

New York (1975).  
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Problems 
 
3-1.  Solve the following problem by the Simplex Method:  
     
    Maximize: 6x1 +   x2 =  p  
    
    Subject to: 3x1 + 5x2 < 13   
    
      6x1 +   x2 < 12  
    
        x1 + 5x2 < 10  

 
Determine the range on x1 and x2 for which the optimal solution remains optimal.  Explain. 
(Note:  It is not necessary to use sensitivity analysis.)  
 

3-2.  Solve the following problem by the Simplex Method:  
     
    Maximize:   x1 + 2x2 + 3x3 - x4  =  p  
     
    Subject to:   x1 + 2x2 + 3x3        + x5 = 15  
       
      2x1 +   x2 + 5x3          + x6 = 20  
           
        x1 + 2x2 +   x3 + x4  = 10  
   
 Start with x4, x5, and x6 in the basis.  
 
3-3. a.    Solve the following problem by the Simplex Method:  
 
    Maximize: 2x1 +   x2  = p  
 
    Subject to:   x1 +   x2  < 6  
 
        x1 -    x2  < 2  
   
        x1 + 2x2  < 10  
    
        x1 -  2x2  < 1  

 
b. Compute the inverse of the optimal basis and the largest changes in bi's for the 

optimal solution remain optimal.  
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3-4.   Solve the following problem by the Simplex Method: 
     
    Maximize: 3x1 + 2x2 = p  
    
   Subject to:   x1 +   x2 < 8  
    
     2x1 +   x2 < 10   
 
3-5. a.  Solve the following problem by the Simplex Method: 
     
    Maximize:    x1 + 2x2  =  p  
    
   Subject to:    x1 + 3x2  < 105  
    
      -x1 +   x2  < 15  
    
      2x1 + 3x2  < 135  
     
                 -3x1 + 2x2  < 15  

 
b.  Solve this problem by the classical theory using Lagrange multipliers, and explain 

why Lagrange multipliers are sometimes called "shadow" or "implicit" prices.  
 
3-6. a. Solve the following problem by the Simplex Method using slack and artificial  
  variables:  
     
    Maximize:  x1 + 10x2  =  p  
    
   Subject to: -x1 +    x2  > 5 
    
     3x1 +   x2  < 15   

 
b.  Calculate the inverse of the optimal basis and the Lagrange multipliers.  
c.  Calculate the largest changes in the right-hand side of the constraint equations (bj's) 

for the optimal solution in part a to remain optimal.  
 

3-7.  Solve the following problem by the Simplex Method using the minimum number of slack, 
surplus, and artificial variables needed for an initially feasible basis.  

     
    Minimize:   2x1 + 4x2 +    x3  = c  
     
    Subject to:   x1 + 2x2  -    x3  < 5  
     
      2x1 -    x2 + 2x3  = 2  
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      -x1 +  2x2 + 2x3  > 1  
 
3-8. a. Solve the following problem using the Simplex Method using an artificial  

 variable x6 in the second constraint equation and adding the term -106x6 to the 
objective function.  

 
    Maximize:      2x1 +   x2 + x3 =  p  
 
    Subject to:  x1 +   x2 + x3 < 10  
 
      x1 + 5x2 + x3 > 20  
 

b.  Compute the effect of changing cost coefficient c1 from 2 to 3, i.e. Δc1 = 1, and c3 
from 1 to 4, i.e., Δc3 = 3 using the results of Example 4-6.  

c. Without resolving the problem, find the new optimal solution if the first constraint 
equation is changed to the following by using the results of Example 4-6: 

      
 x1 + x2 + x3 < 5  

 
Also, compute the new optimal values of x1 and x2 and value of the objective 
function.  

 
3-9. Consider the following linear programming problem:  
    

Maximize: 2x1 +  x2   =  p 
    

Subject to:   x1 + 2x2  < 10  
    
     2x1 + 3x2  < 12  
    
     3x1 +   x2  < 15  
    
       x1 +   x2  >  4  
  

a.  Solve the problem by the Simplex Method using slack variables in the first three 
equations and an artificial variable in the fourth constraint equation as the initially 
feasible basis.  

 b.  The following matrix is the inverse of the optimal basis, A*-1.  Multiply this matrix 
by the matrix A* to obtain the unit matrix I:  
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 c. Compute the Lagrange multipliers for the problem.  
 d. Compute the changes in the right-hand side of the constraint equations that will 

cause all of the values of the variables in the basis to become zero.  
 
3-10.3  Consider the following problem based on a blending analysis:  
    

Minimize: 50x1 + 25x2  = c 
    

Subject to:     x1 +   3x2  > 8  
    
       3x1 +   4x2  > 19  
    
       3x1 +     x2  > 7  
 
 a. Solve this problem by the Simplex Method.  
 b.  Compute the inverse of the optimal basis and the Lagrange multipliers.  
 c. Determine the effect on the optimal solution (variables and cost) if the right-hand 

side of the second constraint equations is changed from 19 to 21 and the right-hand 
side of the third constraint equations is changed from 7 to 8.  

 d. Show that the following must hold for the optimal solution to remain optimal 
considering changes in the cost coefficients.  

 
     3/4 < c1/c2 < 3 
 
3-11. Consider the following linear programming 
problem:  
     

Maximize:   x1 + 9x2 +   x3 = p 
     

Subject to:   x1 + 2x2 + 3x3 < 9   
      
       3x1 + 2x2 + 2x3 < 15  
  
 a.  Solve this problem by the Simplex Method.  
 b.  Compute the inverse of the optimal basis and the Lagrange multipliers.  

 c. Determine the largest changes in the right-hand side and in the cost coefficients of 
the variables in the basis for the optimal solution to remain optimal.   

 
3-12. Solve the following problem by the Simplex Method. To demonstrate your understanding 

of the use of slack and artificial variables, use slack variables in the first two constraint 
equations and an artificial variable in the third constraint equation as the initially feasible 
basis:  

      
     Maximize:  x1 + 2x2 = p  
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    Subject to: -x1 +  x2 < 2  
       x1 +  x2 < 6  
      x1 +  x2 > 1  
 
3-13. a. Derive Equation 4-31 from Equation 3-30.  Explain the significance of the 

 terms in Equation 3-31, and discuss the application of this equation in sensitivity 
analysis associated with coefficients of the variables in the objective function.  

 b. Starting with Equation 3-25 show that the change, in b which gives the limit on Δb 
for xi,* new = 0 is equal to -b.  

 
3-14. In a power plant that is part of a chemical plant or refinery both electricity and process 

steam (high and low pressure) can be produced.  A typical power plant has constraints 
associated with turbine capacity, steam pressure and amounts, and electrical demand.  In 
Stoecker (14) the following economic and process model is developed for a simple power 
plant producing electricity, high pressure steam x1, and low-pressure steam x2.  

 
     Maximize: 0.l6x1 + 0.14x2  =  p  
     
    Subject to:       x1 +        x2  <  20  
     
           x1 +      4x2  <  60  
     
               4x1 +      3x2  <  72 

 
Determine the optimal values of x1 and x2 and the maximum profit using the Simplex 
Method.  

 
3-15. A company makes two levels of purity of a product that is sold in gallon containers.  

Product A is of higher purity than product B with profits of $0.40 per gallon made on A 
and $0.30 per gallon made on B.  Product A requires twice the processing time of B, and 
if all B is produced, the company could make 1,000 gallons per day.  However, the raw 
material supply is sufficient for only 800 gallons per day of both A and B combined.  
Product A requires a container of which only 400 1-gallon containers per day are available 
while there are 700 1-gallon containers per day available for B.  Assuming the entire 
product can be sold of both A and B, what volumes of each should be produced to maximize 
the profit?  Solve the problem graphically and by the Simplex Method.  

 
3-16. A wax concentrating plant, as shown in Figure 3-9, receives feedstock with a low 

concentration of wax and refines it into a product with a high concentration of wax.  In 
Stoecker (14) the selling prices of the products are x1, $8 per hundred pounds; and x2, $6 
per hundred pounds; and the raw material costs are x3, $1.5 per hundred pounds, and x4, $3 
per hundred pounds. 

 The plant operates under the following constraints: 
 a.  The same amount of wax leaves the plant as enters it. 
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 b. The receiving facilities of the plant are limited to no more than a total of 800 pounds 
per hour. 

 c. The packaging facilities can accommodate a maximum of 600 pounds per hour of 
x2 and 500 pounds per hour of x1. 

If the operating cost of the plant is constant, use the Simplex Algorithm to determine the 
purchase and production plan that result in the maximum profit.  
 
 

 
 
 
 

3-17. A company produces a product and a byproduct, and production is limited by two 
constraints.  One is on the availability raw material, and the other is on the capacity of the 
processing equipment.  The product requires 3.0 units of raw material and 2.0 units of 
processing capacity.  The byproduct requires 4.0 units of raw materials and 5.0 units of 
processing capacity.  There is a total of 1,700 units of raw material available and a total of 
1600 units of processing capacity.  The profit is $2.00 per unit for the product and $4.00 
per unit for the by-product.   

  The economic model and constraints are:  
      
     Maximize: 2x1 + 4x2  
      
     Subject to: 3x1 + 4x2 < 1700  raw material constraint  
      
       2x1 + 5x2 < 1600  processing capacity constraint  
 
   a. Determine the maximum profit and the production of the product x1 and byproduct x2 

using the Simplex Method.  
   b. Calculate the inverse of the optimal basis and the Lagrange multipliers.  
 c. i. If the total raw material available is increased from 1700 to 1701, determine the new 

product, byproduct and profit.  
    ii. If an additional 10 units of processing capacity can be obtained at a cost of  

        $7, i.e. 1600 is increased to 1610, is this additional capacity worth obtaining?  

Wax Concentrating Plant

40% wax

60% wax

90% wax

80% wax

x3

x4

x1

x2

Figure 3-9 Wax Concentrating Plant for Problem 3-16
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   d.  A second by-product can be produced which requires 4.0 units of raw material and 3 
1/3 units of processing capacity.  Determine the profit that would have to be made on 
this by-product to consider its production.  

 
3-18.14 A chemical plant, whose flow diagram is shown in Figure 3-10, manufactures ammonia,  

 hydrochloric acid, urea, ammonium carbonate, and ammonium chloride from carbon 
dioxide, nitrogen, hydrogen, and chlorine. The x values in Figure 3-10 indicate flow rates 
in moles per hour.  

 
The costs of the feed stocks are c1, c2, c3 and c4; the values of the products are p5, p6, p7 and 
p8 in dollars per mole where the subscript corresponds to that of the x value.  In reactor 3 
the ratios of molar flow rates are m = 3x7 and x1 = 2x7 and, in other reactors, straightforward 
material balances apply.  The capacity of reactor 1 is equal to or less than 2,000 mol/hr of 
NH3 and the capacity of reactor 2 is equal to or less than 1,500 mol/hr of HCl as given by 
Stoecker (14).  

    a.  Develop the expression for the profit.  
   b.  Write the constraint equations for this plant.  
 

 
 
 
 

Figure 3.10 Flow Diagram of a Chemical Plant in Problem 4-18 (after Stoecker (14))
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3-19.8  The flow diagram of a simple petroleum refinery is shown in Figure 3-11.  The prices and 
quality specifications of the products and their minimum production rates are given below: 
 
Product  Quality   Minimum Production (bbl/day) Prices($/bbl)   
Premium Gasoline > 91 Mon   25,000    $ 45.00  
Regular Gasoline > 89 Mon   10,000    43.50  
Fuel Oil   < 55 Cont. No.   30,000    13.00    

 
The current cost of crude is $32.00/barrel. Operating cost for separation in the crude still is $0.25 
per barrel. for each product produced. The operating cost for the catalytic cracking unit is $0.10 
for the straight run distillate and $0.15 for the straight run fuel oil.  
The following table gives the specifications for each blending component:  
 
          Component    MON      Cont. No   
  Hv. Cat. Cycle Oil    -         59  
  Lt. Cat. Cycle Oil   88         50  
  Cat. Naphtha    97          -  
  Straight Run Distillate   84          -  
  Straight Run Gasoline   92          -   

 
The capacity of the catalytic cracking unit must not exceed 50,000 barrels/day and the crude still 
is limited to 100,000 barrels/day.  The crude is separated into three volume fractions in the crude 
still, 0.2 straight run gasoline, 0.5 straight run distillate, and 0.3 straight run fuel oil.  In the catalytic 
cracking unit, a product distribution of 0.7 barrel of cat. naphtha, 0.4 light cat. cycle oil and 0.2 
barrel of heavy cat. cycle oil is obtained per barrel of straight run distillate.  The straight run fuel 
oil product distribution is 0.1 barrel of cat. naphtha, 0.3 barrel of light cat. cycle oil and 0.7 barrel 
of heavy cat. cycle oil.  

 
Present a matrix representation of this simple refinery similar to the one shown in Figure 4-8.  Be 
sure to include the objective function and material balance, unit, and blending constraints.  
 
3-20. For the results of the MPSX optimization of the simple refinery consider the following:  
  
a.  In Table 3-12(b), it shows that the variable SRNPG is not in the basis.  Compute the largest 
change in the cost coefficient of SRNPG for the optimal solution to remain optimal.  Confirm that 
this is the correct answer by the sensitivity analysis results tabulated in the chapter.  
 
b.  In Table 3-12(b) the fuel oil (FO) flow rate is at the optimal value of 10,000 bbl/day.  Compute 
the change in the profit if the fuel oil flow rate is increased to 11,000 bbl/day using Lagrange 
multipliers.  Would this change cause the problem to be resolved according to the MPSX results, 
why? 
 
c.  The marketing department of the company requires a minimum of 5,000 bbl/day of residual 
fuel, a new product.  Residual fuel (RF) is straight run fuel oil (SRFO) directly from the 
atmospheric distillation column.  The price is $10.00 /bbl, and it is sold "as is". Give the 
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modifications required to the matrix in Figure 3-8 to determine the optimum way to operate the 
refinery with this new product.  
 

 
3-21. Prepare a matrix of the objective function and constraint equations from the process flow  
 diagram for the contact process for sulfuric acid like the one given in Figure 3-8 for the  
 simple refinery.  The process flow diagram for the contact process is given in Figure 9- 
 21.  Use the following data, and assume that the units not included below have a fixed  
 operating cost that do not affect the optimization. 
 

Sales Prices and Raw Material Cost       ($/lb) 
    Steam from Boiler 1 (STB1)       0.012 
    Steam from Boiler 2 (STB2)       0.012 
   Sulfuric Acid (H2SO4)       0.050 

Sulfur to Burner (SULFUR)       0.025 
    Water to Economizer (WATER)      0.006 
    Make-up Water (MWATER)       0.006 
 

Operating Costs         ($/lb) 
    Steam from Boiler 1 (STB1)       0.001 
    Steam from Boiler 2 (STB2)       0.001 
   Air through Dryer (DRYAIR)      0.005 
   Water to Economizer (WATER)      0.001 
   Acid through acid cooler (H2SO4)      0.001 
   Acid through absorber (H2SO4)      0.001 
  

) )
)
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Octane Specification 
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Figure 3-11 Flow Diagram of a Simple Refinery (8) in Problem 4-19
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Product Requirements and Raw Material Availability    (lb/hr) 
    Sulfuric Acid (H2SO4)       30,000 
   Steam (STB1 + STB2)       40,000  
    Sulfur (SULFUR)        10,000 
 

Process Unit Maximum Capacities       (lb/hr) 
    Waste Heat Boiler 1(STB1)        25,000 

Waste Heat Boiler 2(STB2)        25,000 
   Acid Cooler (H2SO4)         35,000 
    Dryer (DRYAIR)                 150,000 
    Economizer (WATER)        60,000 
    Absorber (H2SO4)         35,000 

 
Stream Split 

    Sulfuric Acid Production  = 3.06 SULFUR 
  Dry air    = 0.155 SULFUR     

Make-up Water  = 0.128 SULFUR  
    Steam from Boilers 1 and 2  = WATER 
 
 
3-22.17 In linear programming there is a dual problem that is obtained from the original or primal 
 problem.  Many times, the dual problem can be solved with less difficulty than the primal  
 one.  The primal problem and corresponding dual problem are stated below in a general  
 form.  
  Primal Problem    Dual Problem 
  Maximize: cTx    Minimize: bTv  
  Subject to: A x < b   Subject to: AT v > c 
    x > 0         v > 0   
 

The relationships between the primal and dual problems are summarized as follows.  First, 
the dual of the dual is the primal problem.  An m x n primal gives a n x m dual.  For each 
primal constraint there is a dual variable and vice versa.  For each primal variable there is 
a dual constraint and vice versa.  The numerical value of the maximum of the primal is 
equal to the numerical value of the minimum of the dual.  The solution of the dual problem 
is the Lagrange multipliers of the primal problem.  
 

 a.  Give the primal problem of the following dual problem.  
     
    Minimize: 10v1 + 15v2  
    
   Subject to:     v1 +   5v2  > 8  
    
           v1 +     v2  > 4  
    
 b.  Solve the dual problem by the Simplex Method.  
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   c. Using the solution of the dual problem, determine the optimal values for the 
variables in the primal problem.  

3-23. The dual problem of linear programming can be obtained from the primal problem using  
 Lagrange multipliers.  Using the form of the equations given in Problem 4-22 for the  
 primal problem and considering the slack variables have been added to the constraints,  
 show that the Lagrange function can be written as:  
    

L(x, λ) = cT x + λT (A x - b) 
 
 Rearrange this equation to give the following form.  
 
    L(x, λ) = -bT λ + xT(AT λ + c)   
 

Justify that the following constrained optimization problem can be obtained from the 
Lagrange function:  

   
     Minimize:    bT λ  
   
    Subject to:  AT λ > c 

 
This is the dual problem given in Problem 3-22.  Note that the independent variables of the 
dual problem are the Lagrange multipliers or "shadow prices" of the primal problem. 
  

3-24. A primal programming can be converted into a dual problem as described in Problems 4- 
22 and 4-23.  This approach is used when the dual problem is easier to solve than the primal 
problem.  The general form of the primal problem and its dual was given in Problem 4-22.  
 
a. Solve the dual problem of the primal problem and its dual given below. 
  

    Primal problem:  
     Minimize: 10x1 + 6x2 + 8x3   
     Subject to:     x1 +   x2 + 2x3 > 2  
            5x1 + 3x2 + 2x3 > 1  
 
    Dual problem:  
     Maximize: 2v1 +   v2  
     Subject to:   v1 + 5v2 < 10  
         v1 + 3v2 < 6  
       2v1 + 2v2 < 8   
 
    b. In this procedure the solution of the primal problem is the negative of the 

coefficients of the slack variables in the objective function of the final iteration of 
the Simplex Method of the dual problem, and the solution of the dual problem is 
the negative of the Lagrange multipliers for the primal problem.   Give the solution 
of the primal problem and the Lagrange multipliers for the primal problem and 
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show that the minimum of the objective function of the primal problem is equal to 
the maximum of the objective function of the dual problem.  

   c. In the primal problem give the matrix to be inverted to compute the inverse of the 
optimal basis.  

    d. Compute the Lagrange multipliers using Equation 4-22 and show that they agree 
with the solution from the dual problem. 

   e.  A new variable x6 is added to the problem, as shown below.  
      
     Minimize: 10x1 + 6x2 + 8x3 +                 2x6 = p  
      
     Subject to:     x1 +   x2 + 2x3 + x4 +         5x6  = 2  
      
         5x1 + 3x2 + 2x3         + x5 + 3x6  = 1    

 
Will the optimal solution remain optimal or will the problem have to be resolved? 
Explain.  
 

3-25.  Solve Example 3-5 by the Two-Phase Method.  In this method, the objective function is 
replaced by the sum of the artificial variables as a “new” objective function to be minimized.  Then 
the Simplex Method is performed. The artificial variables will not be in the optimal solution since 
the minimum will have them be zero.  First, the artificial variables are eliminated in the objective 
function to have the proper format to apply the Simplex Method with the artificial variables being 
the initially feasible basis.  With each application of the Simplex Method an artificial variable is 
replaced in the basis by another variable, and the minimum is reached when all of the artificial 
variables have left the basis and are zero.  At this point, the “new” objective function is replaced 
with the original objective function and the artificial variables are discarded.  The Simplex Method 
is applied with the feasible basis obtained from the last step with the “new” objective function, and 
the algorithm is applied to reach the optimum. 
 
 


